a) We can find the time t 1 t_1 t 1 at which the ball reaches the highest point of its trajectory from the kinematic equation:
v y = v 0 s i n θ − g t 1 , v_y=v_0sin\theta-gt_1, v y = v 0 s in θ − g t 1 , 0 = v 0 s i n θ − g t 1 , 0=v_0sin\theta-gt_1, 0 = v 0 s in θ − g t 1 , t 1 = v 0 s i n θ g = 50 f t s ⋅ s i n 3 7 ∘ 32 f t s 2 = 0.94 s . t_1=\dfrac{v_0sin\theta}{g}=\dfrac{50\ \dfrac{ft}{s}\cdot sin37^{\circ}}{32\ \dfrac{ft}{s^2}}=0.94\ s. t 1 = g v 0 s in θ = 32 s 2 f t 50 s f t ⋅ s in 3 7 ∘ = 0.94 s . b) We can find the maximum height of the ball from the formula:
y m a x = v 0 2 s i n 2 θ 2 g = ( 50 f t s ) 2 ⋅ s i n 2 3 7 ∘ 2 ⋅ 32 f t s 2 = 14.15 f t . y_{max}=\dfrac{v_0^2sin^2\theta}{2g}=\dfrac{(50\ \dfrac{ft}{s})^2\cdot sin^237^{\circ}}{2\cdot32\ \dfrac{ft}{s^2}}=14.15\ ft. y ma x = 2 g v 0 2 s i n 2 θ = 2 ⋅ 32 s 2 f t ( 50 s f t ) 2 ⋅ s i n 2 3 7 ∘ = 14.15 f t . c) We can find the total flight time of the ball from the formula:
t = 2 t 1 = 2 ⋅ 0.94 s = 1.88 s . t=2t_1=2\cdot0.94\ s=1.88\ s. t = 2 t 1 = 2 ⋅ 0.94 s = 1.88 s . The horizontal range can be found as follows:
x = v 0 t c o s θ = 50 f t s ⋅ 1.88 s ⋅ c o s 3 7 ∘ = 75 f t . x=v_0tcos\theta=50\ \dfrac{ft}{s}\cdot 1.88\ s\cdot cos37^{\circ}=75\ ft. x = v 0 t cos θ = 50 s f t ⋅ 1.88 s ⋅ cos 3 7 ∘ = 75 f t . d) The horizontal component of the ball's velocity can be found as follows:
v x = v 0 c o s θ = 50 f t s ⋅ c o s 3 7 ∘ = 40 f t s . v_x=v_0cos\theta=50\ \dfrac{ft}{s}\cdot cos37^{\circ}=40\ \dfrac{ft}{s}. v x = v 0 cos θ = 50 s f t ⋅ cos 3 7 ∘ = 40 s f t . The vertical component of the ball's velocity at time t = 1.88 s t=1.88\ s t = 1.88 s can be found as follows:
v y = v 0 s i n θ − g t = 50 f t s ⋅ s i n 3 7 ∘ − 32 f t s 2 ⋅ 1.88 s = − 30 f t s . v_y=v_0sin\theta-gt=50\ \dfrac{ft}{s}\cdot sin37^{\circ}-32\ \dfrac{ft}{s^2}\cdot1.88\ s=-30\ \dfrac{ft}{s}. v y = v 0 s in θ − g t = 50 s f t ⋅ s in 3 7 ∘ − 32 s 2 f t ⋅ 1.88 s = − 30 s f t . Finally, we can find the velocity of the ball as it strikes the ground from the Pythagorean theorem:
v = v x 2 + v y 2 = ( 40 f t s ) 2 + ( − 30 f t s ) 2 = 50 f t s . v=\sqrt{v_x^2+v_y^2}=\sqrt{(40\ \dfrac{ft}{s})^2+(-30\ \dfrac{ft}{s})^2}=50\ \dfrac{ft}{s}. v = v x 2 + v y 2 = ( 40 s f t ) 2 + ( − 30 s f t ) 2 = 50 s f t . Answer:
a) t 1 = 0.94 s . t_1=0.94\ s. t 1 = 0.94 s .
b) y m a x = 14.15 f t . y_{max}=14.15\ ft. y ma x = 14.15 f t .
c) t = 1.88 s , x = 75 f t . t=1.88\ s, x=75\ ft. t = 1.88 s , x = 75 f t .
d) v = 50 f t s . v=50\ \dfrac{ft}{s}. v = 50 s f t .
Comments