Question #157174
A car mass 1400kg moves with a steady speed of 20 m/s on a straight rough road with its engine working at a constant rate of 36KW.
(a) Calculate the resistance R to the motion of the car if the road is horizontal.
Given that R is proportional to the square of the speed of the car,
(b) Show that R = 9v^2 /2 .
1
Expert's answer
2021-02-07T19:18:30-0500

2 forces act on the car along the X axis\text{2 forces act on the car along the X axis}

Rresistance to movementR - \text{resistance to movement}

Fmcar motor powerF_m-\text{car motor power}

the direction of these forces is opposite\text{the direction of these forces is opposite}

the car moves at a constant speed according to Newton’s first law,\text{the car moves at a constant speed according to Newton's first law,}

the resultant of forces is 0\text{the resultant of forces is 0}

F=FmR;F=0;R=FmF= F_m-R;F=0;R=F_m

a)P=Fmva)P= F_m*v

Fm=Pv=3600020=1800F_m=\frac{P}{v}=\frac{36000}{20}=1800

R=Fm=1800NR=F_m = 1800 N

b)R=kv2b)R =k*v^2

k=Rv2=1800202=92k= \frac{R}{v^2}= \frac{1800}{20^2}= \frac{9}{2}

R=9v22R= \frac{9v^2}{2}

Answer:a)R=1800Na)R = 1800N b)R=9v22b)R= \frac{9v^2}{2}





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS