"\\text {let }O\\text{ middle of ladder}"
"AO=OB= l;AC=\\frac{l}{3};BC=\\frac{5l}{3}"
"s-\\text{angle s to the horizontal;}"
"F_{fr}-\\text{friction force at point }B"
"T_A-\\text{wall reaction force}"
"T_B-\\text{reaction force at point B}"
"mg - \\text{the gravity of the ladder at a point }O"
"mg - \\text{the gravity of the man at a point }C"
"\\text{forces along the X-axis (horizontal)}"
"T_A-F_{fr}=0"
"\\text{forces along the Y-axis (vertical)}"
"T_B-mg-mg=0;T_B-2mg=0;"
"\\text{equilibrium condition about point }B"
"T_A\\sin{(s)}-mg*\\cos(s)*AC-mg*\\cos(s)*AO=0"
"T_A\\sin{(s)}-mg*\\cos(s)*\\frac{1}{3}-mg*\\cos(s)*l=0"
"T_A=\\frac{4}{3}\\cot(s)mg"
"F_{fr}=\\frac{4}{3}\\cot(s)mg"
"a)\\text{friction static of the ladder and the man} - \\frac{1}{3}mg+\\frac{1}{3}mg=\\frac{2}{3}mg"
"\\text{ limiting equilibrium} F_{fr} \\text{equal to static friction}"
"F_{fr}=\\frac{4}{3}\\cot(s)mg"
"\\frac{4}{3}\\cot(s)mg=\\frac{2}{3}mg"
"\\cot(s)=\\frac{1}{2}"
"\\tan(s)=2"
"b)" "T_A=F_{fr}=\\frac{4}{3}\\cot(s)mg"
"T_g-\\text{reaction force on the ground.}"
"T_g= \\sqrt{T_B^2+F_{fr}^2}"
"T_B=2mg"
"T_g= \\sqrt{(4m^2g^2+\\frac{16}{9}}\\cot^2(s)m^2g^2)"
Answer:a)"\\tan(s)=2" b)"T_A=\\frac{4}{3}\\cot(s)mg" ;"T_g= \\sqrt{(4m^2g^2+\\frac{16}{9}}\\cot^2(s)m^2g^2)"
Comments
Leave a comment