A particle P moves on the plane. Position vector of P is "\\vec{r}". Angle "\\theta" measured from point O to OP. If "\\ddot{\\vec{r}}=(kr\\dot{\\theta}-\\mu r)\\hat{e}_r+k\\dot{r}\\hat{e}_\\theta" where "k" and "\\mu" are constant and "\\mu >\\frac{3}{4}k^2". Defining initial conditions at the time "t=0" ,"\\vec{r}=a\\hat{e}_r, \\dot{\\vec{r}}=\\frac{1}{2}ka\\hat{e}_\\theta" and "\\theta=0" find equation of motion of P"\\ddot{\\vec{r}}=(kr\\dot{\\theta}-\\mu r)\\hat{e}_r+k\\dot{r}\\hat{e}_\\theta)"
Comments
Leave a comment