Answer
Using newton law
f=ma=md2xdt2=k/x3f=ma=m\frac{d^2x}{dt^2}=k/x^3f=ma=mdt2d2x=k/x3
Particle goes 0 to x0 in time 0 to the
Solving above equation
dxdt=−k/2mx2+c\frac{dx}{dt}=-k/2mx^2+cdtdx=−k/2mx2+c
At t=0 V=0 so C=0
Again integrate
dxdt=−k/2mx2\frac{dx}{dt}=-k/2mx^2dtdx=−k/2mx2
∫0x02x2dx=−∫0tkdt/m\int_0^{x_0}2x^2 dx=-\int _0^tkdt/m∫0x02x2dx=−∫0tkdt/m
2x033=−kt/m\frac{2x_0^3}{3}=-kt/m32x03=−kt/m
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments