Let the particle of mass m, is moving with velocity "\\overrightarrow{v}" then linear momentum of the particle will be "\\overrightarrow{p}" .and particle is at a distance "\\overrightarrow{r}" from the origin.
Let the angular momentum of the particle is "\\overrightarrow{L}."
So, angular momentum of the particle will be "\\overrightarrow{L}=\\overrightarrow{r}\\times \\overrightarrow{p}"
"\\Rightarrow \\overrightarrow{L}=|\\overrightarrow{r}||\\overrightarrow{p}|\\sin\\theta \\hat{n}"
where "\\theta" is the angle between "\\overrightarrow{r}" and "\\overrightarrow{p}" and "\\hat{n}" is the unit vector perpendicular to "\\overrightarrow{r}" and "\\overrightarrow{p}"
Now, taking the time derivative of "\\overrightarrow{L}=\\overrightarrow{r}\\times \\overrightarrow{p}"
"\\Rightarrow \\frac{d\\overrightarrow{L}}{dt}=\\frac{d \\overrightarrow{r}}{dt}\\times \\overrightarrow{p}+\\overrightarrow{r}\\times \\frac{{d\\overrightarrow{p}}}{dt}"
from newton's second law of motion,"\\Sigma \\overrightarrow{F}=\\frac{d\\overrightarrow{p}}{dt}"
Hence, "\\frac{d\\overrightarrow{L}}{dt}=\\overrightarrow{r}\\times \\overrightarrow{F}"
But we know that "\\overrightarrow{\\tau}= \\overrightarrow{r}\\times \\overrightarrow{F}"
Hence, "\\overrightarrow{\\tau}=\\frac{d\\overrightarrow{L}}{dt}"
Comments
Leave a comment