dLdt=r×F=τ
Answer
Position vector can be written as
r=xi^+yi^+zi^r=x\hat {i}+y\hat {i}+z\hat {i}r=xi^+yi^+zi^
=(x0+at2)i^+bt3j^+ctk^(x_0 + at^2) \hat {i} +bt^3 \hat {j}+ct \hat {k}(x0+at2)i^+bt3j^+ctk^
Now acceleration can be written as
a=d2rdt2=(2a)i^+6btj^a=\frac{d^2r}{dt^2}= (2a) \hat {i} +6bt\hat {j}a=dt2d2r=(2a)i^+6btj^
Now cross product
r×F=r×(ma)r×F=r×(ma)r×F=r×(ma)
=m(r×a)=m(r×a)=m(r×a)
=∣i^j^k^(x0+at2)bt3ct2a6bt0∣=\begin{vmatrix} \hat{i} & \hat{j} & \hat{k}& \\ (x_0 + at^2) & bt^3 & ct \\ 2a & 6bt &0 \end{vmatrix}=∣∣i^(x0+at2)2aj^bt36btk^ct0∣∣
=−6bct2i^−2actj^+(6x0bt+4abt3)k^=-6bct^2\hat{i}-2act \hat{j}+(6x_0bt+4abt^3) \hat{k}=−6bct2i^−2actj^+(6x0bt+4abt3)k^
This means
r×F≠0r×F ≠ 0r×F=0
In this specific case we can rewrite as
dL/dt=r×F=τdL/dt=r×F=τdL/dt=r×F=τ
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments