Answer
Position vector can be written as
r = x i ^ + y i ^ + z i ^ r=x\hat {i}+y\hat {i}+z\hat {i} r = x i ^ + y i ^ + z i ^
=( x 0 + a t 2 ) i ^ + b t 3 j ^ + c t k ^ (x_0 + at^2) \hat {i} +bt^3 \hat {j}+ct
\hat {k} ( x 0 + a t 2 ) i ^ + b t 3 j ^ + c t k ^
Now acceleration can be written as
a = d 2 r d t 2 = ( 2 a ) i ^ + 6 b t j ^ a=\frac{d^2r}{dt^2}= (2a) \hat {i} +6bt\hat {j} a = d t 2 d 2 r = ( 2 a ) i ^ + 6 b t j ^
Now cross product
r × F = r × ( m a ) r×F=r×(ma) r × F = r × ( ma )
= m ( r × a ) =m(r×a) = m ( r × a )
= ∣ i ^ j ^ k ^ ( x 0 + a t 2 ) b t 3 c t 2 a 6 b t 0 ∣ =\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k}& \\
(x_0 + at^2) & bt^3 & ct \\
2a & 6bt &0
\end{vmatrix} = ∣ ∣ i ^ ( x 0 + a t 2 ) 2 a j ^ b t 3 6 b t k ^ c t 0 ∣ ∣
= − 6 b c t 2 i ^ − 2 a c t j ^ + ( 6 x 0 b t + 4 a b t 3 ) k ^ =-6bct^2\hat{i}-2act \hat{j}+(6x_0bt+4abt^3) \hat{k} = − 6 b c t 2 i ^ − 2 a c t j ^ + ( 6 x 0 b t + 4 ab t 3 ) k ^
This means
r × F ≠ 0 r×F ≠ 0 r × F = 0
In this specific case we can rewrite as
d L / d t = r × F = τ dL/dt=r×F=τ d L / d t = r × F = τ
Comments