How to find the equation of trajectory using conservation of energy theorem
"E_p+Ek = const"
"E_p,E_k-\\text{potential and kinetic energy of the body}"
"E_p = mgh"
"\u0415\u043a = \\frac{mV^2}{2}"
"\\text{let }E_k =0;E_p=mgh_{max};const= mgh_{max}"
"mgh +\\frac{mV^2}{2}=mgh_{max}"
"h= h_{max}-\\frac{V^2}{2g}"
"h(t)= h_{max}-\\frac{V(t)^2}{2g};V(t) -\\text{change in speed over time}"
Answer:"h(t)=h_{max}-\\frac{V^2(t)}{2g};V(t)-\\text{changein speed over time}"
Comments
Leave a comment