Answer to Question #149208 in Classical Mechanics for David mark

Question #149208
Given that vector A =5i-7j+3k and B=-4i+4j-8k,find (I)AxB(ii)BxA
1
Expert's answer
2020-12-06T17:16:43-0500

Given,

A=5i^7j^+3k^,A =5\hat{i}-7\hat{j}+3\hat{k},


B=4i^+4j^8k^B=-4\hat{i}+4\hat{j}-8\hat{k}


A×B=[i^j^k^573448]A\times B = \begin{bmatrix} \hat{i} & \hat{j}& \hat{k}\\ 5 & -7 & 3\\ -4 & 4 & -8\\ \end{bmatrix}


=i^(5612)j^(40+12)+k^(2028)=\hat{i}(56-12)-\hat{j}(-40+12)+\hat{k}(20-28)


=44i^+28j^8k^=44\hat{i}+28\hat{j}-8\hat{k}


B×A=[i^j^k^448573]B\times A = \begin{bmatrix} \hat{i} & \hat{j}& \hat{k}\\ -4 & 4 & -8\\ 5 & -7 & 3\\ \end{bmatrix}


=i^(1256)j^(12+40)+k^(2820)=\hat{i}(12-56)-\hat{j}(-12+40)+\hat{k}(28-20)


=44i^28j^+8k^=-44\hat{i}-28\hat{j}+8\hat{k}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment