Let us consider the object is under free falling motion from height H H H .Mass is m m m .
At certain time the position of the object will be at ( 0 y 0 ) \begin{pmatrix}
0\\
y\\
0
\end{pmatrix} ⎝ ⎛ 0 y 0 ⎠ ⎞ and velocity will be ( 0 y ˙ 0 ) \begin{pmatrix}
0 \\
\dot y\\0
\end{pmatrix} ⎝ ⎛ 0 y ˙ 0 ⎠ ⎞ .
Now, Kinetic energy of the object will be
K = 1 2 m y ˙ 2 K=\frac{1}{2}m\dot y^2 K = 2 1 m y ˙ 2 And, Potential energy will be
U = m g y U=mgy U = m g y Thus, Lagrangian is given by
L = K − U ⟹ L = 1 2 m y ˙ 2 − m g y \mathscr{L}=K-U\\\implies
\mathscr{L}=\frac{1}{2}m\dot y^2-mgy L = K − U ⟹ L = 2 1 m y ˙ 2 − m g y Therefore, from Euler Lagrange Equation of motion we get,
∂ L ∂ y − d d t ( ∂ L ∂ y ˙ ) = 0 \frac{\partial \mathscr{L}}{\partial y}-\frac{d}{dt}\bigg(\frac{\partial \mathscr{L}}{\partial \dot y}\bigg)=0 ∂ y ∂ L − d t d ( ∂ y ˙ ∂ L ) = 0 Hence,
− m g − d d t ( m y ˙ ) = 0 ⟹ m y ¨ = − m g ⟹ y ¨ = − g -mg-\frac{d}{dt}(m\dot y)=0\\
\implies m\ddot y=-mg\\
\implies \boxed{ \ddot y=-g} − m g − d t d ( m y ˙ ) = 0 ⟹ m y ¨ = − m g ⟹ y ¨ = − g Which is what exactly Newton's law predicted.
Comments