Here,m is the mass of pendulum and M is the mass of spring , g is the acceleration due to gravity and at level block potential energy is equal to 0.
(a) F=-kx
"(m+M) \\frac{d^2x}{dt^2}=-kx"
(b) for degree of freedom
s=n-m
s=2-1 =1
so,here degree of freedom will be 1
(c) F= -mg"\\theta"
here, "\\theta= \\frac{s}{l}"
For the position vector of mass
(d)
r= R +l("sin\\theta \\hat{i} +cos \\theta \\hat {j})"
and the velocity is represented as
v= "\\dot{R} +l \\dot\\theta(sin\\theta \\hat{i} +cos \\theta \\hat {j})"
(e)
"KE=\\frac{1}{2} mv^2= \\frac{1}{2} m (\\mid{\\dot{R}}\\mid^2+ l^2\\dot{\\theta}^2+2l\\dot{\\theta}(\\dot{X}cos \\theta-\\dot{Y}sin\\theta)"
(f) and for potential energy
PE= "-" "(m+M)g cos \\theta - (m+M)g Y"
(g)
L= KE-PE
L= "\\frac{1}{2} m (\\mid{\\dot{R}}\\mid^2+ l^2\\dot{\\theta}^2+2l\\dot{\\theta}(\\dot{X}cos \\theta-\\dot{Y}sin\\theta)+(m+M)g cos \\theta +(m+M)g Y" +
Comments
Leave a comment