As per the given question,
mass of the puck "(m_1)=80.0 gm"
radius "(r_1)=4.0cm"
Speed of the puck "(v_1)= 1.50 m\/s"
Radius of the glancing collision "(r_2)=6.00 cm"
mass "(m_2)=120 gm"
As the diagram is not given in the question,
Applying the conservation of center of mass,
"y=\\dfrac{m_1r_1+m_2r_2}{m_1+m_2}"
now substituting the values,
"y=\\dfrac{80\\times4-120\\times 6}{80+120}=-2cm"
Hence angular momentum of the "(L)=mvr =80\\times10^{-3} \\times2\\times 10^{-2}\\times 1.5 kg m^2\/sec"
"=7.2\\times 10^{-3}kg m^2\/sec"
b) angular speed about the center of mass "(\\omega)=\\dfrac{L}{I}"
"=\\dfrac{7.2\\times 10^{-3}kg m^2\/sec}{I}"
"I=\\frac{m_1 r_1^2}{2}+m_1d_1^2+\\frac{m_2 r_2^2}{2}+m_2d_2^2"
"=\\dfrac{80\\times 10^{-3}\\times (4\\times 10^{-2})^2}{2}+80\\times 10^{-3}\\times (6\\times 10^{-2})^2+\\dfrac{120\\times 10^{-3}\\times (6\\times 10^{-2})^2}{2}+{120\\times 10^{-3}\\times (6\\times 10^{-2})^2}" "I=7.6\\times 10^{-4}kg-m^2"
Now, substituting the values,
"(\\omega)=\\dfrac{7.2\\times 10^{-3}kg-m^2\/sec}{7.6\\times 10^{-4}kg-m^2}" "=9.47 rad\/sec"
Comments
Leave a comment