As per the given question,
Moment of inertia of the first disc "(I_1)=10kg m^2"
Angular speed of the first disc"(\\omega_1)=60 rpm"
Moment of inertia of the second disc "(I_2)=5kgm^2"
Angular speed of the second disc "(\\omega_2)=30rpm"
When the smaller disc will drop on the larger, then net momentum always be conserve,
Let the final angular momentum be "\\omega_3"
Hence, applying the conservation of the angular momentum
"I_1\\omega_2-I_2\\omega_2= (I_1+I_2) \\omega_3"
"\\Rightarrow \\omega_3= \\dfrac{I_1\\omega_2-I_2\\omega_2}{I_1+I_2}"
"\\Rightarrow \\omega_3= \\dfrac{10\\times 60-5\\times 30}{10+5}"
"\\Rightarrow \\omega_3=\\dfrac{600-300}{15}"
"\\Rightarrow \\omega_3=\\dfrac{300}{15}=20rpm"
Comments
Leave a comment