4. a. The moment of inertia of the gate is
"I=\\frac{1}{3}ml^2=\\frac{1}{3}\\cdot153\\cdot2.8^2=399.84\\text{ kg}\\cdot\\text{m}^2."
b. The angular acceleration is
"\\alpha=\\frac{\\tau}{I}=\\frac{Fl}{I}=\\frac{100\\cdot2.8}{399.84}=0.7\\text{ rad\/s}^{2}."
c. For a 50-degree angle, the time will be
"t=\\sqrt{\\frac{2\\phi}{\\alpha}}=\\sqrt{\\frac{2\\cdot50^\\circ\/180^\\circ\\cdot3.14}{0.7}}=1.58\\text{ s}."
5. The moment of inertia of the pulley:
"I=\\frac{1}{2}mr^2."Newton's second law, torque equilibrium and angular to linear acceleration transformation for the two blocks and the disk:
"T_1-m_1g=-m_1a,\\\\\nT_2-m_2g=m_2a,\\\\\nT_1R-T_2R=I\\alpha,\\\\\n\\space\\\\\n\\alpha=\\frac{a}{r}." Solving this altogether, we have
"a=g\\frac{m_1-m_2}{m_1+m_2+\\frac{1}{2}m}=1.85\\text{ m\/s}^2."
Comments
Leave a comment