Mechanical energy at the surface of the earth=
"\\dfrac{GM}{R}=\\dfrac{6.67\u00d710^{\u221211} \\times5.97\u00d710^{24}}{(6400)\\times10^3)}=\\dfrac{39.8199\\times10^{13}}{64\\times10^5}"
"=\\dfrac{39.82\\times 10^8}{64}=6.22\\times 10^7J\/kg"
Mechanical energy per kg at height ="\\dfrac{GM}{(R+h)}\n\n\u200b\t\n + \n\\dfrac{\nv ^\n2}2\n \n\u200b"
"=\\dfrac{GM}{(R+h)}+\\dfrac{GM}{(R+h)}=\\dfrac{2GM}{(R+h)}"
"=\\dfrac{2\\times6.67\u00d710^{\u221211} \\times5.97\u00d710^{24}}{(6400+42000)\\times10^3)}"
"=\\dfrac{2\\times 39.8199\\times 10^{13}}{(462\\times 10^5)}"
"=\\dfrac{79.6398\\times10^{13}}{462\\times 10^5}=0.172\\times 10^8 J\/kg"
"=1.72\\times 10^7 J\/kg"
Hence the required difference="6.22\u00d710 \n^7\n \u22121.72\u00d710 \n^7\n =4.5\u00d710 \n^7\n J\/kg"
Comments
Leave a comment