Let's denote "M" as fuel grade uranium.
We know the mass of 235U is "0.04M". We need to calculate how many U-235 nucleus are inside of this mass.
"N = \\frac{0.04M}{235} N_A = \\frac{0.04M}{235}\\cdot 6.02 \\cdot 10^{23}= 1.025\\cdot 10^{20} M"
These nucleus will produce
"E= 1.025 \\cdot 10^{20} M \\cdot 200 \\; MeV = 1.025 \\cdot 10^{20} \\cdot 200 \\cdot 10^{6} \\cdot 1.6 \\cdot 10^{-19} \\cdot M \\; \\;J ="
"= 328 \\cdot 10^7 M \\; \\; J"
This energy should be equal to "\\epsilon \\mathcal{E} t = 0.33 \\cdot1000\\; MW \\cdot 1 \\; year= 330 \\cdot 10^6 \\cdot 31\\; 556\\; 926 \\; J \\approx 1.043 \\cdot 10^{16} \\; J"
So,
"327 \\cdot 10^7 M = 1.043 \\cdot 10^{16}"
"M = 3.2 \\cdot 10^{6} \\; g = 3.2 \\cdot 10^{3} \\; kg."
Comments
Leave a comment