radium with an atomic mass of 226,has a half life of 800 years. for 0.5g of radium, calculate the number of decays per seconds
The number of decays per second is called total activity that is defined by the formula
"A(t) = -\\frac{dN}{dt}= \\lambda N = \\frac{ln 2}{T_{1\/2}}N_0 2^{-t\/T_{1\/2}}= \\frac{ln 2}{T_{1\/2}} \\frac{m}{\\mu} N_A 2^{-t\/T_{1\/2}}"
"\\mu = A_r(Ra) = 226" g/mol, "t=1"s, "T_{1\/2} = 800 \\cdot 365 \\cdot 24 \\cdot 3600 = 2.25 \\cdot 10^{10}" s, "m = 0.5" g.
"A(t) = \\frac{0.69}{2.25 \\cdot 10^{10}} \\frac{0.5}{226} \\cdot 6.02 \\cdot 10^{23} \\cdot 2^{-1\/10^{10}}" = "\\backslash 2^{-10^{-10}} \\approx2^{0}= 1 \\backslash" = "0.004 \\cdot 10^{13} = 4 \\cdot 10^{10}" decays per second.
Comments
Leave a comment