a) At the end of two half-lives of isotope Y ("2t_Y"), isotope X will pass through 4 half-lives ("4t_X"). Calculate the number of isotopes X left after this time:
"N_X(t)=\\frac{N}{2^{t\/t_{X}}}=\\frac{N}{2^{4t_X\/t_{X}}}=\\frac{N}{2^4},\\\\\n\\space\\\\\nN_Y(t)=\\frac{5N}{2^{t\/t_Y}}=\\frac{5N}{2^{2t_Y\/t_Y}}=\\frac{N}{2^2},\\\\\n\\space\\\\\n\\chi=\\frac{N_Y(t)}{N_X(t)}=20." b) i. The decay equation for polonium-210 is
"N(t)=N_0e^{-\\lambda t}=N_0e^{-5.80 \u00d7 10^{\u22128}t}." ii. Calculate the activity of 1.80 mg of polonium-210:
"A=\\lambda N_0=\\lambda\\cdot\\frac{m}{\\Mu}\\cdot N_A=\\\\\n=5.8\\cdot10^{-8}\\cdot\\frac{1.8\\cdot10^{-3}}{210}\\cdot6.022\\cdot10^{23}=2.99\\text{ Bq}." iii. How many nuclei of the polonium remain after 98 days:
"N(t)=N_0e^{-\\lambda t}=\\frac{m}{\\Mu}\\cdot N_Ae^{-5.80 \u00d7 10^{\u22128}t}=\\\\\n\\space\\\\\n=\\frac{1.8\\cdot10^{-3}}{210}\\cdot6.022\\cdot10^{23}e^{-5.8\\cdot10^{-8}\\cdot98\\cdot24\\cdot3600}=\\\\=3.16\\cdot10^{18}."
Comments
Leave a comment