(a) Compute the binding energy in each atom:
Eb(15O, MeV)=931.494[Zmp+Nmn−M(O)]==931.494[8⋅1.0072765+7⋅1.0086654−15.003066]==107.87 MeV. Eb(15N, MeV)=931.494[Zmp+Nmn−M(N)]==931.494[7⋅1.0072765+8⋅1.0086654−15.003066]==111.92 MeV. The difference is
ΔEb=4.05 MeV.(b) Compute the nuclear radius of each isotope, denote it RC.
The empirical nuclei radius is
R=r0A31,where
r0=1.2⋅10−15 m is an empirical constant (takes values (1.2...1.5) fm),
A - mass number.
The Coulomb energy is
EC=53⋅4πϵ01⋅RQ2, where Q=Ze.
On the other hand, the Coulomb energy is
EC≈αCA1/3Z(Z−1),
where
αC=20πϵ0r03e2is called electrostatic Coulomb constant.
Therefore, the nuclear radius will be
EC=53⋅4πϵ01⋅RC(eZ)2, RC=20πϵ0⋅EC3e2Z2= =20πϵ0⋅αCA1/3Z(Z−1)3e2Z2= =20πϵ0⋅20πϵ0r03e2A1/3Z(Z−1)3e2Z2= =Z−1Zr0A1/3.As we can notice, this expression gives a bit higher results than the empirical nuclei radius R, which would give equal results for oxygen and nitrogen. Calculate it and the radii RC obtained from Coulomb's energy:
R(O)=R(O)=3⋅10−15 m.RC(O)=3.3⋅10−15 m,RC(N)=3.5⋅10−15 m.
Comments
Leave a comment