(a) Compute the binding energy in each atom:
"E_b(^{15}\\text{O, MeV})=931.494[Zm_p+Nm_n-M(\\text{O})]=\\\\\n=931.494[8\\cdot1.0072765+7\\cdot1.0086654-15.003066]=\\\\\n=107.87\\text{ MeV}.\\\\\n\\space\\\\\nE_b(^{15}\\text{N, MeV})=931.494[Zm_p+Nm_n-M(\\text{N})]=\\\\\n=931.494[7\\cdot1.0072765+8\\cdot1.0086654-15.003066]=\\\\\n=111.92\\text{ MeV}." The difference is
"\\Delta E_b=4.05\\text{ MeV}."(b) Compute the nuclear radius of each isotope, denote it "R_C".
The empirical nuclei radius is
"R=r_0A^\\frac{1}{3},"where
"r_0=1.2\\cdot10^{-15}\\text{ m}" is an empirical constant (takes values (1.2...1.5) fm),
A - mass number.
The Coulomb energy is
"E_C=\\frac{3}{5}\\cdot\\frac{1}{4\\pi\\epsilon_0}\\cdot\\frac{Q^2}{R}," where "Q=Ze."
On the other hand, the Coulomb energy is
"E_C\\approx\\alpha_C\\frac{Z(Z-1)}{A^{{1}\/{3}}},"
where
"\\alpha_C=\\frac{3e^2}{20\\pi\\epsilon_0r_0}"is called electrostatic Coulomb constant.
Therefore, the nuclear radius will be
"E_C=\\frac{3}{5}\\cdot\\frac{1}{4\\pi\\epsilon_0}\\cdot\\frac{(eZ)^2}{R_C},\\\\\n\\space\\\\\nR_C=\\frac{3e^2Z^2}{20\\pi\\epsilon_0\\cdot E_C}=\\\\\n\\space\\\\\n=\\frac{3e^2Z^2}{20\\pi\\epsilon_0\\cdot \\alpha_C\\frac{Z(Z-1)}{A^{{1}\/{3}}}}=\\\\\n\\space\\\\\n=\\frac{3e^2Z^2}{20\\pi\\epsilon_0\\cdot \\frac{3e^2}{20\\pi\\epsilon_0r_0}\\frac{Z(Z-1)}{A^{{1}\/{3}}}}=\\\\\n\\space\\\\\n=\\frac{Z}{Z-1}r_0A^{{1}\/{3}}."As we can notice, this expression gives a bit higher results than the empirical nuclei radius R, which would give equal results for oxygen and nitrogen. Calculate it and the radii RC obtained from Coulomb's energy:
"R(\\text{O})=R(\\text{O})=3\\cdot10^{-15}\\text{ m}.\\\\\nR_C(\\text{O})=3.3\\cdot10^{-15}\\text{ m},\\\\\nR_C(\\text{N})=3.5\\cdot10^{-15}\\text{ m}."
Comments
Leave a comment