"F=ma"
"\\frac{2q^2}{4\\pi \\epsilon_0r^2}=m\\frac{v^2}{r}\\to m^2v^2=\\frac{2mq^2}{4\\pi \\epsilon_0r}"
According to Bohr's model of the atom
"mvr=n\\frac{h}{2\\pi}". In our case "n=1"
"\\frac{2mq^2}{4\\pi \\epsilon_0r}=\\frac{h^2}{4\\pi^2r^2}\\to r=\\frac{\\epsilon_0h^2}{2\\pi mq^2}"
"v=\\frac{h}{2\\pi mr}=\\frac{2\\pi hmq^2}{2\\pi m\\epsilon_0h^2}=\\frac{q^2}{\\epsilon_0h}"
So, we have
"v=\\omega r\\to \\omega=\\frac{v}{r}=\\frac{q^2}{\\epsilon_0h}\\cdot \\frac{2\\pi mq^2}{\\epsilon_0h^2}=\\frac{2\\pi mq^4}{\\epsilon^2_0h^3}" Answer.
Comments
Leave a comment