According to the third Kepler's law,
a 1 3 T 1 2 = a 2 3 T 2 2 ⇒ ( T 2 T 1 ) 2 = ( a 2 a 1 ) 3 \displaystyle \frac{a_1^3}{T_1^2} = \frac{a_2^3}{T_2^2} \;\; \Rightarrow \; \Big(\frac{T_2}{T_1}\Big)^2 = \Big(\frac{a_2}{a_1}\Big)^3 T 1 2 a 1 3 = T 2 2 a 2 3 ⇒ ( T 1 T 2 ) 2 = ( a 1 a 2 ) 3
where T is a period and a is semi-major axis.
It is given that a 2 = 2 a 1 a_2=2a_1 a 2 = 2 a 1 , so
( T 2 T 1 ) 2 = ( 2 a 1 a 1 ) 3 = 2 3 = 8 \displaystyle \Big(\frac{T_2}{T_1} \Big)^2 = \Big(\frac{2a_1}{a_1} \Big)^3 = 2^3 = 8 ( T 1 T 2 ) 2 = ( a 1 2 a 1 ) 3 = 2 3 = 8
T 2 2 = 8 T 1 2 \displaystyle T_2^2 = 8 T_1^2 T 2 2 = 8 T 1 2
T 2 = 8 T 1 = 2.828 ⋅ 100 = 282.8 years \displaystyle T_2 = \sqrt{8} \,T_1 = 2.828 \cdot 100 = 282.8 \; \textrm{years} T 2 = 8 T 1 = 2.828 ⋅ 100 = 282.8 years
Answer: 282.8 years
Comments
Leave a comment