Show that ¥(x,t)= Asin(wt+kx) describes a wave motion
Answer:
Step 1
Given:
ψ(x,t)=Asin(wt+kx)
Step 2
Calculation:
ψ(x,t)=Asin(wt+kx)
ψx,t=Asinwt+kx
We know the wave equation is
"\u2202^2\u03c8 \\over \u2202x^2" = "1 \\over v^2" "\u2202^2\u03c8 \\over \u2202t^2" →(1)
let us find out all the derivatives
"\u2202\u03c8 \\over \u2202x" =Ak cos(wt+kx)
Again differentiate with respect to x,
"\u2202^2\u03c8 \\over \u2202x^2" = Ak2 sin(wt+kx)(Sinceψ(x,t)=Asin(wt+kx)
"\u2202^2\u03c8 \\over \u2202x^2" =−k2ψ(x,t)→(2)
Step 3
Now,Let's find out time derivatives
"\u2202\u03c8 \\over \u2202t" =Aw cos(wt+kx)
Again differentiate with respect to x,
"\u2202^2\u03c8 \\over \u2202t^2" =−Aw2 sin(wt+kx) (Sinceψ(x,t)=Asin(wt+kx)
"\u2202^2\u03c8 \\over \u2202t^2" = −w2 ψ(x,t)→(3)
Put the values in(1) equation (2) & (3)
−k2 ψ(x,t)= "1 \\over v^2" −w2 ψ(x,t)
Step 4
v2 ψ(x,t)= "w^2 \\over k^2" ψ(x,t)
(Since one dimensional wave equationv= "w \\over k" and v2 = "w^2 \\over k^2" )
v2 ψ(x,t)=v2 ψ(x,t)
Hence it is proved.
Comments
Leave a comment