Answer to Question #156342 in Other for ali

Question #156342

A tie bar of length 2.5 m and diameter 10 mm carries an axial load of 12 kN. The modulus of

elasticity of the bar material is 180 GPa. Determine the induced tensile stress, the tensile

strain and the change in length that occurs.


1
Expert's answer
2021-01-19T04:21:34-0500

AA is the cross sectional area of tie bar


A=πd24=π(102m)24=7.854×105m2A=\dfrac{\pi d^2}{4}=\dfrac{\pi(10^{-2}m)^2}{4}=7.854\times10^{-5}m^2

σ\sigma is the induced tensile stress


σ=FA=12×103N7.854×105m2=1.528×109 Pa\sigma=\dfrac{F}{A}=\dfrac{12\times10^3N}{7.854\times10^{-5}m^2}=1.528\times10^9\ Pa

EE  is the modulus of elasticity of the material. 

ε\varepsilon is the tensile strain. 


ε=σE=1.528×109N/m2180×109Pa=0.008488\varepsilon=\dfrac{\sigma}{E}=\dfrac{1.528\times10^9N/m^2}{180\times10^9Pa}=0.008488

The change in length that occurs


x=εL=0.008488×2.5m=0.02122m=21.22mmx=\varepsilon L=0.008488\times2.5m=0.02122m=21.22mm



σ=1.528×109 Pa=1.528 GPa\sigma=1.528\times10^9\ Pa=1.528\ GPa


ε=0.008488\varepsilon=0.008488


x=21.22 mmx=21.22\ mm



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment