Solution:
((−tana)/(1−cota))2−〖tana〗2=0
(tana/(cota−1))2−〖tana〗2=0
〖tana〗2(1/(cota−1)2−1)=0
〖tana〗2=0or1/(cota−1)2=1
If 〖tana〗2=0 , then tan a=0, so the angle will be a=πn, n ∈ Z.
If 1/(cota−1)2=1 , then cot a =2, so the angle will be a=arccot 2+πm, m ∈ Z
or cot a = 0, but in this situation tan a→∞
Answer: πn, n ∈ Z; arccot 2+πm, m ∈ Z.
Comments