a) Diameter of this Ferris wheel is double the amplitude "d=67\\cdot 2=134m"
b)At t = 0 raider will be at height of "67sin [12(0 + 0.0223)] + 70=67sin(0.2676)+70\\approx" 87.71598.
c)Since "sin [12(t + 0.0223)] \\leq1" The rider is "67\\cdot 1+70=137m" high off the ground if he is at the top of the wheel.
d)Rider will be at the bottom of the Ferris wheel when his height is minimal, when "sin [12(t + 0.0223)] =-1, \\ when\\ 12(t + 0.0223)=3 \\pi\/4+2\\pi\\cdot k"
"(t + 0.0223)=(3 \\pi\/4+2\\pi\\cdot k)\/12"
"t =- 0.0223+(3 \\pi\/4+2\\pi\\cdot k)\/12=- 0.0223+\\pi\/16+\\pi\/6\\cdot k"
e)If t1 and t2 are to consecutive moments when the rider is in the same place
"12(t_2 + 0.0223)-12(t_1 + 0.0223)=2\\pi,\\\\\n\\ t_2-t_1=2\\pi\/12=\\pi\/6"
Answer: a) 134m, b)87.71598, c) 137m, d) "t =- 0.0223+\\pi\/16+\\pi\/6\\cdot k" e)"\\pi\/6" .
Comments
Leave a comment