Answer to Question #93165 in Trigonometry for Amey

Question #93165
IfSin⁴x-cos^7x=1 find general solution
1
Expert's answer
2019-08-23T09:45:04-0400

sin4xcos7x=134cos2x+cos4x8cos7x=134(2cos2x1)+(2cos22x1)8cos7x=838cos2x+4+2(2cos2x1)218cos7x=88cos2x8cos7x+8cos4x8cos2x+2+6=8cos4xcos7x2cos2x=0cos2x(cos2xcos5x2)=0cosx=0x=π2+πk,kzcos2xcos5x2=0cosx=1x=π+2πk,kZ Answer: π2+πk,kZ    ;    π+2πk,kZ\sin ^{4} x-\cos ^{7} x=1 \\ \frac{3-4 \cos 2 x+\cos 4 x}{8}-\cos ^{7} x=1 \\ 3-4\left(2 \cos ^{2} x-1\right)+\left(2 \cos ^{2} 2 x-1\right)-8 \cos ^{7} x=8 \\ 3-8 \cos ^{2} x+4+2\left(2 \cos ^{2} x-1\right)^{2}-1-8 \cos ^{7} x=8 \\ -8 \cos ^{2} x-8 \cos ^{7} x+8 \cos ^{4} x-8 \cos ^{2} x+2+6=8 \\ \cos ^{4} x-\cos ^{7} x-2 \cos ^{2} x=0 \\ \cos ^{2} x\left(\cos ^2{x}-\cos ^{5} x-2\right)=0 \\ \cos x=0 \\ x=\frac{\pi}{2}+\pi k, k \in z \\ \cos ^{2} x-\cos ^{5} x-2=0 \\ \begin{array}{l}{\cos x=-1} \\ {x=\pi+2 \pi k, k \in Z}\end{array} \\ \begin{array}{c}{\text { Answer: } \frac{\pi}{2}+\pi k, k \in Z} \ \ \ \ ; \ \ \ \ {\pi+2 \pi k, k \in Z}\end{array}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment