sin4x−cos7x=183−4cos2x+cos4x−cos7x=13−4(2cos2x−1)+(2cos22x−1)−8cos7x=83−8cos2x+4+2(2cos2x−1)2−1−8cos7x=8−8cos2x−8cos7x+8cos4x−8cos2x+2+6=8cos4x−cos7x−2cos2x=0cos2x(cos2x−cos5x−2)=0cosx=0x=2π+πk,k∈zcos2x−cos5x−2=0cosx=−1x=π+2πk,k∈Z Answer: 2π+πk,k∈Z ; π+2πk,k∈Z
Comments
Leave a comment