Find the angle "x" between RP and RQ using the law of cosines:
"PQ^2=RP^2+RQ^2-2RP\\cdot RQ\\cdot cos x""cos x=\\frac{RP^2+RQ^2-PQ^2}{2RP\\cdot RQ}""cos x=\\frac{8^2+10^2-12^2}{2\\cdot 8\\cdot 10}=\\frac{64+100-144}{160}=\\frac{20}{160}=\\frac{1}{8}"
"x\\approx 83\\degree" Then the bearing of P from R is:
"150\\degree-83\\degree=67\\degree"
Comments
Leave a comment