To show: "(1-tan^2\\theta\/2)(1-tan^2\\theta\/2^2)(1-tan^2\\theta\/2^3)......" "=\\theta*cot\\theta"
or Equivalently; "lim_{n \\to \\infty } (1-tan^2\\theta\/2)(1-tan^2\\theta\/2^2)..." "(1-tan^2\\theta\/2^n)=\\theta*cot\\theta"
LHS "= lim_{n \\to \\infty}(1-tan^2\\theta\/2)(1-tan^2\\theta\/2^2)...""(1-tan^2\\theta\/2^n)*tan\\theta*cot\\theta"
"=cot\\theta *lim_{n \\to \\infty}\\cancel{(1-tan^2\\theta\/2)}(1-tan^2\\theta\/2^2)..." "(1-tan^2\\theta\/2^n)(2tan\\theta\/2)\/\\cancel{(1-tan^2\\theta\/2)}"
"=cot\\theta* lim_{n \\to \\infty}(1-tan^2\\theta\/2^2)...(1-tan^2\\theta\/2^n)" "(2tan\\theta\/2)"
"=cot\\theta* lim_{n \\to \\infty}\\cancel{(1-tan^2\\theta\/2^2)}...(1-tan^2\\theta\/2^n)" "(2^2tan\\theta\/2^2)\/\\cancel{(1-tan^2\\theta\/2^2)}"
"..."
"=cot\\theta*lim_{n \\to \\infty}\\cancel{(1-tan^2\\theta\/2^n)}" "(2^ntan\\theta\/2^n)\/\\cancel{(1-tan^2\\theta\/2^n)}"
"=cot\\theta*lim_{n \\to \\infty}2^ntan\\theta\/2^n*(\\theta\/\\theta)"
"=\\theta*cot\\theta*lim_{n \\to \\infty}(tan(\\theta\/2^n))\/(\\theta\/2^n)"
"=\\theta cot\\theta"
"=RHS"
Hence Proved.
Formulas used:
Comments
Leave a comment