To show: ( 1 − t a n 2 θ / 2 ) ( 1 − t a n 2 θ / 2 2 ) ( 1 − t a n 2 θ / 2 3 ) . . . . . . (1-tan^2\theta/2)(1-tan^2\theta/2^2)(1-tan^2\theta/2^3)...... ( 1 − t a n 2 θ /2 ) ( 1 − t a n 2 θ / 2 2 ) ( 1 − t a n 2 θ / 2 3 ) ...... = θ ∗ c o t θ =\theta*cot\theta = θ ∗ co tθ
or Equivalently; l i m n → ∞ ( 1 − t a n 2 θ / 2 ) ( 1 − t a n 2 θ / 2 2 ) . . . lim_{n \to \infty } (1-tan^2\theta/2)(1-tan^2\theta/2^2)... l i m n → ∞ ( 1 − t a n 2 θ /2 ) ( 1 − t a n 2 θ / 2 2 ) ... ( 1 − t a n 2 θ / 2 n ) = θ ∗ c o t θ (1-tan^2\theta/2^n)=\theta*cot\theta ( 1 − t a n 2 θ / 2 n ) = θ ∗ co tθ
LHS = l i m n → ∞ ( 1 − t a n 2 θ / 2 ) ( 1 − t a n 2 θ / 2 2 ) . . . = lim_{n \to \infty}(1-tan^2\theta/2)(1-tan^2\theta/2^2)... = l i m n → ∞ ( 1 − t a n 2 θ /2 ) ( 1 − t a n 2 θ / 2 2 ) ... ( 1 − t a n 2 θ / 2 n ) ∗ t a n θ ∗ c o t θ (1-tan^2\theta/2^n)*tan\theta*cot\theta ( 1 − t a n 2 θ / 2 n ) ∗ t an θ ∗ co tθ
= c o t θ ∗ l i m n → ∞ ( 1 − t a n 2 θ / 2 ) ( 1 − t a n 2 θ / 2 2 ) . . . =cot\theta *lim_{n \to \infty}\cancel{(1-tan^2\theta/2)}(1-tan^2\theta/2^2)... = co tθ ∗ l i m n → ∞ ( 1 − t a n 2 θ /2 ) ( 1 − t a n 2 θ / 2 2 ) ... ( 1 − t a n 2 θ / 2 n ) ( 2 t a n θ / 2 ) / ( 1 − t a n 2 θ / 2 ) (1-tan^2\theta/2^n)(2tan\theta/2)/\cancel{(1-tan^2\theta/2)} ( 1 − t a n 2 θ / 2 n ) ( 2 t an θ /2 ) / ( 1 − t a n 2 θ /2 )
= c o t θ ∗ l i m n → ∞ ( 1 − t a n 2 θ / 2 2 ) . . . ( 1 − t a n 2 θ / 2 n ) =cot\theta* lim_{n \to \infty}(1-tan^2\theta/2^2)...(1-tan^2\theta/2^n) = co tθ ∗ l i m n → ∞ ( 1 − t a n 2 θ / 2 2 ) ... ( 1 − t a n 2 θ / 2 n ) ( 2 t a n θ / 2 ) (2tan\theta/2) ( 2 t an θ /2 )
= c o t θ ∗ l i m n → ∞ ( 1 − t a n 2 θ / 2 2 ) . . . ( 1 − t a n 2 θ / 2 n ) =cot\theta* lim_{n \to \infty}\cancel{(1-tan^2\theta/2^2)}...(1-tan^2\theta/2^n) = co tθ ∗ l i m n → ∞ ( 1 − t a n 2 θ / 2 2 ) ... ( 1 − t a n 2 θ / 2 n ) ( 2 2 t a n θ / 2 2 ) / ( 1 − t a n 2 θ / 2 2 ) (2^2tan\theta/2^2)/\cancel{(1-tan^2\theta/2^2)} ( 2 2 t an θ / 2 2 ) / ( 1 − t a n 2 θ / 2 2 )
. . . ... ...
= c o t θ ∗ l i m n → ∞ ( 1 − t a n 2 θ / 2 n ) =cot\theta*lim_{n \to \infty}\cancel{(1-tan^2\theta/2^n)} = co tθ ∗ l i m n → ∞ ( 1 − t a n 2 θ / 2 n ) ( 2 n t a n θ / 2 n ) / ( 1 − t a n 2 θ / 2 n ) (2^ntan\theta/2^n)/\cancel{(1-tan^2\theta/2^n)} ( 2 n t an θ / 2 n ) / ( 1 − t a n 2 θ / 2 n )
= c o t θ ∗ l i m n → ∞ 2 n t a n θ / 2 n ∗ ( θ / θ ) =cot\theta*lim_{n \to \infty}2^ntan\theta/2^n*(\theta/\theta) = co tθ ∗ l i m n → ∞ 2 n t an θ / 2 n ∗ ( θ / θ )
= θ ∗ c o t θ ∗ l i m n → ∞ ( t a n ( θ / 2 n ) ) / ( θ / 2 n ) =\theta*cot\theta*lim_{n \to \infty}(tan(\theta/2^n))/(\theta/2^n) = θ ∗ co tθ ∗ l i m n → ∞ ( t an ( θ / 2 n )) / ( θ / 2 n )
= θ c o t θ =\theta cot\theta = θ co tθ
= R H S =RHS = R H S
Hence Proved.
Formulas used:
t a n 2 θ = 2 t a n θ / ( 1 − t a n 2 θ ) tan2\theta=2tan\theta/(1-tan^2\theta) t an 2 θ = 2 t an θ / ( 1 − t a n 2 θ ) l i m x → 0 ( t a n x ) / x = 1 lim_{x \to 0} (tanx)/x =1 l i m x → 0 ( t an x ) / x = 1
Comments