The Law of Cosines: "\\cos(C)= \\frac{a^2+b^2-c^2}{2ab}"
"\\cos(C)= \\frac{AC^2+BC^2-AB^2}{2\u22c5AC\u22c5BC}=\\frac{23^2+21^2-16^2}{2\u22c523\u22c521}= \\frac{714}{966}\\approx0.74"
"\\angle C=\\arccos{0.74}\\approx42.3^\\circ"
"\\cos(A)= \\frac{AC^2+AB^2-BC^2}{2\u22c5AC\u22c5AB}=\\frac{23^2+16^2-21^2}{2\u22c523\u22c516}= \\frac{344}{736}\\approx0.47"
"\\angle A=\\arccos{0.47}\\approx62.1^\\circ"
"\\angle B=180^\\circ-(42.3^\\circ+62.1^\\circ)=75.6^\\circ"
Answer: "\\angle A=62.1^\\circ, \\angle B=75.6^\\circ, \\angle C=42.3^\\circ."
Comments
Leave a comment