We can use The Law of Sines first to find angle C:
"\\frac{AB}{\\sin{C}}=\\frac{BC}{\\sin{A}},"
"\\frac{12.2}{\\sin{C}}=\\frac{14.5 \\cdot 2}{\\sqrt{3}},""C=\\arcsin{\\frac{61\\sqrt{3}}{145}}."
The other angle C might be
"180 \\degree - \\arcsin{\\frac{61\\sqrt{3}}{145}} \\approx 133.23 \\degree,"but this is impossible, since the sum of the angles A and C is more than 180°.
Use "the three angles add to 180°" to find angle B:
"B = 180\\degree - A - C = 120\\degree - C."
Now we can use The Law of Sines again to find AC:
"\\frac{AC}{\\sin{B}}=\\frac{BC}{\\sin{A}},"
"\\sin{B} = \\sin{(120\\degree - C)} = \\\\ \\sin{120\\degree}\\cos{C}-\\cos{120\\degree}\\sin{C} = \\\\ \\frac{\\sqrt{3}}{2} \\sqrt{1-\\left(\\frac{61\\sqrt{3}}{145}\\right)^2} - \\left(-\\frac{1}{2}\\right) \\cdot \\frac{61\\sqrt{3}}{145} = \\frac{\\sqrt{3}}{290}\\left(\\sqrt{9862}+61\\right),"
"AC = \\frac{14.5 \\cdot 2}{\\sqrt{3}} \\sin{B} = \\frac{1}{10} \\left(\\sqrt{9862}+61\\right)."Answer:
"C=\\arcsin{\\frac{61\\sqrt{3}}{145}} \\approx 46.77 \\degree,""B = 120\\degree - C \\approx 73.23 \\degree,""AC = \\frac{1}{10} \\left(\\sqrt{9862}+61\\right) \\approx 16.03."
Comments
Leave a comment