We can use The Law of Sines first to find angle C:
A B sin C = B C sin A , \frac{AB}{\sin{C}}=\frac{BC}{\sin{A}}, sin C A B = sin A BC ,
12.2 sin C = 14.5 ⋅ 2 3 , \frac{12.2}{\sin{C}}=\frac{14.5 \cdot 2}{\sqrt{3}}, sin C 12.2 = 3 14.5 ⋅ 2 , C = arcsin 61 3 145 . C=\arcsin{\frac{61\sqrt{3}}{145}}. C = arcsin 145 61 3 .
The other angle C might be
180 ° − arcsin 61 3 145 ≈ 133.23 ° , 180 \degree - \arcsin{\frac{61\sqrt{3}}{145}} \approx 133.23 \degree, 180° − arcsin 145 61 3 ≈ 133.23° , but this is impossible, since the sum of the angles A and C is more than 180°.
Use "the three angles add to 180°" to find angle B:
B = 180 ° − A − C = 120 ° − C . B = 180\degree - A - C = 120\degree - C. B = 180° − A − C = 120° − C .
Now we can use The Law of Sines again to find AC:
A C sin B = B C sin A , \frac{AC}{\sin{B}}=\frac{BC}{\sin{A}}, sin B A C = sin A BC ,
sin B = sin ( 120 ° − C ) = sin 120 ° cos C − cos 120 ° sin C = 3 2 1 − ( 61 3 145 ) 2 − ( − 1 2 ) ⋅ 61 3 145 = 3 290 ( 9862 + 61 ) , \sin{B} = \sin{(120\degree - C)} = \\ \sin{120\degree}\cos{C}-\cos{120\degree}\sin{C} = \\ \frac{\sqrt{3}}{2} \sqrt{1-\left(\frac{61\sqrt{3}}{145}\right)^2} - \left(-\frac{1}{2}\right) \cdot \frac{61\sqrt{3}}{145} = \frac{\sqrt{3}}{290}\left(\sqrt{9862}+61\right), sin B = sin ( 120° − C ) = sin 120° cos C − cos 120° sin C = 2 3 1 − ( 145 61 3 ) 2 − ( − 2 1 ) ⋅ 145 61 3 = 290 3 ( 9862 + 61 ) ,
A C = 14.5 ⋅ 2 3 sin B = 1 10 ( 9862 + 61 ) . AC = \frac{14.5 \cdot 2}{\sqrt{3}} \sin{B} = \frac{1}{10} \left(\sqrt{9862}+61\right). A C = 3 14.5 ⋅ 2 sin B = 10 1 ( 9862 + 61 ) . Answer:
C = arcsin 61 3 145 ≈ 46.77 ° , C=\arcsin{\frac{61\sqrt{3}}{145}} \approx 46.77 \degree, C = arcsin 145 61 3 ≈ 46.77° , B = 120 ° − C ≈ 73.23 ° , B = 120\degree - C \approx 73.23 \degree, B = 120° − C ≈ 73.23° , A C = 1 10 ( 9862 + 61 ) ≈ 16.03. AC = \frac{1}{10} \left(\sqrt{9862}+61\right) \approx 16.03. A C = 10 1 ( 9862 + 61 ) ≈ 16.03.
Comments