Question #311452

Solve the equation 8sin^2𝑥−7=2cos𝑥 for 0≤𝑥≤360°, giving your answers to 1 decimal place.


1
Expert's answer
2022-03-17T18:45:09-0400

Explanations & Calculations


8sin2x7=2cosx8(1cos2x)7=2cosx8cos2x+2cosx1=0(4cosx1)(2cosx+1)=0cosx=14:x=75.50&284.50orcosx=12:x=120.00&240.00\qquad\qquad \begin{aligned} \small 8\sin^2x-7&=\small 2\cos x\\ \small 8(1-\cos^2x)-7&=\small 2\cos x\\ \small 8\cos^2x+2\cos x-1&=\small 0\\ \small (4\cos x-1)(2\cos x+1)&=\small 0\\ \small \cos x &= \small \frac{1}{4}\quad: \, x = 75.5^0\,\&\,284.5^0\\ \small or\\ \small \cos x&=\small -\frac{1}{2}\quad: x=120.0^0\,\&\,240.0^0 \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS