Solve the equation 8sin^2𝑥−7=2cos𝑥 for 0≤𝑥≤360°, giving your answers to 1 decimal place.
Explanations & Calculations
"\\qquad\\qquad\n\\begin{aligned}\n\\small 8\\sin^2x-7&=\\small 2\\cos x\\\\\n\\small 8(1-\\cos^2x)-7&=\\small 2\\cos x\\\\\n\\small 8\\cos^2x+2\\cos x-1&=\\small 0\\\\\n\\small (4\\cos x-1)(2\\cos x+1)&=\\small 0\\\\\n\\small \\cos x &= \\small \\frac{1}{4}\\quad: \\, x = 75.5^0\\,\\&\\,284.5^0\\\\\n\\small or\\\\\n\\small \\cos x&=\\small -\\frac{1}{2}\\quad: x=120.0^0\\,\\&\\,240.0^0\n\\end{aligned}"
Comments
Leave a comment