Prove:
a. (sin𝑥+cos𝑥)^2 ≡1+2sin𝑥cos𝑥
b. (1+sin𝑥+ cos𝑥)^2 ≡2 (1+sin𝑥) (1+cos𝑥)
c. (6−cos^2𝜃)/(sin^2𝜃+5) ≡1
a. (sinx+cosx)2 = (sinx+cosx)(sinx+cosx) = sinx(sinx+cosx) + cosx(sinx+cosx) = sin2x + sinxcosx + cosxsinx + cos2x = sin2x + 2sinxcosx + cos2x = (sin2x + cos2x) + 2sinxcosx = 1 + 2sinxcosx
b. (1+ sinx + cosx)2 = (1 + sinx + cosx)(1 + sinx + cosx) = (1 + sinx + cosx) + sinx(1 + sinx + cosx) + cosx(1+ sinx + cosx) = 1 + sinx + cosx + sinx + sin2x +sinxcosx + cosx +cosxsinx + cos2x = 1 + (sin2x + cos2x) + 2sinx + 2cosx + 2sinxcosx = 2 + 2sinx(1+cosx) + 2cosx = 2(1 + cosx) + 2sinx(1 + cosx) = 2(1 + cosx)(1 + sinx) = 2(1 + sinx)(1 + cosx)
c. "\\dfrac{6-cos^2\\theta}{sin^2\\theta+5} = \\dfrac{6sin^2\\theta+6cos^2\\theta-cos^2\\theta}{sin^2\\theta+5sin^2\\theta +5cos^2\\theta} = \\dfrac{6sin^2\\theta+5cos^2\\theta}{6sin^2\\theta +5cos^2\\theta} =1"
Comments
Leave a comment