Answer to Question #301960 in Trigonometry for Nabs

Question #301960

Show the derivation of the formula.



Cos u/2=±√1+cos u/2.

1
Expert's answer
2022-03-01T11:03:10-0500

cos(u+v) = cos u cos v - sin u sin v

Put v = u, we get

cos (u + u) = cos u cos u - sin u sin u

cos 2u = cos2usin2ucos^2u - sin^2 u

cos2u=cos2u(1cos2u)cos 2u = cos^2u - (1-cos^2u)

cos2u=2cos2u1cos 2u = 2 cos^2 u - 1

On rearranging, we get,

2cos2u=1+cos2u2 cos^2 u = 1 +cos 2u

cos2u=1+cos2u2cos ^2u = \frac{1+cos 2u}{2}

cosu=(1+cos2u2)cos u =\sqrt{(\frac{1+cos2u}{2})}

put u = u/2

cosu2=((1+cosu)2)cos\frac{u}{2} = \sqrt{(\frac{(1+cos u)}{2})}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment