Show the derivation of the formula.
Cos u/2=±√1+cos u/2.
cos(u+v) = cos u cos v - sin u sin v
Put v = u, we get
cos (u + u) = cos u cos u - sin u sin u
cos 2u = cos2u−sin2ucos^2u - sin^2 ucos2u−sin2u
cos2u=cos2u−(1−cos2u)cos 2u = cos^2u - (1-cos^2u)cos2u=cos2u−(1−cos2u)
cos2u=2cos2u−1cos 2u = 2 cos^2 u - 1cos2u=2cos2u−1
On rearranging, we get,
2cos2u=1+cos2u2 cos^2 u = 1 +cos 2u2cos2u=1+cos2u
cos2u=1+cos2u2cos ^2u = \frac{1+cos 2u}{2}cos2u=21+cos2u
cosu=(1+cos2u2)cos u =\sqrt{(\frac{1+cos2u}{2})}cosu=(21+cos2u)
put u = u/2
cosu2=((1+cosu)2)cos\frac{u}{2} = \sqrt{(\frac{(1+cos u)}{2})}cos2u=(2(1+cosu))
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments