If Cot θ= 12/5 , and
Cos θ= 1/tan θ. Evaluate;
Cos2θ/sin θ + Cos θ
"\\cot\\theta=12\/5=>\\tan \\theta=1\/\\cot \\theta=5\/12"
1.
If "\\cos \u03b8= 1\/\\tan \u03b8," then "\\cos \u03b8= 1\/\\tan \u03b8=12\/5."
There is no solution, because "-1\\leq \\cos \\theta\\leq 1" for "\\theta \\in \\R."
2.
Suppose that the condition "\\cos \u03b8= 1\/\\tan \u03b8" is False.
Then
"\\sin ^2 \\theta=\\dfrac{1}{1+\\cot^2\\theta}=\\dfrac{1}{1+(12\/5)^2}=\\dfrac{25}{169}"
"\\cos ^2\\theta=1-\\sin^2\\theta=1-\\dfrac{25}{169}=\\dfrac{144}{169}"
"=\\dfrac{(\\cos \\theta-\\sin \\theta)(\\cos \\theta+\\sin \\theta)}{\\cos \\theta+\\sin \\theta}"
"=\\cos \\theta-\\sin \\theta,\\cos \\theta\\not=-\\sin \\theta"
i)
Then
"\\cos \\theta=\\sqrt{\\dfrac{144}{169}}=\\dfrac{12}{13}"
"\\dfrac{\\cos(2\\theta)}{\\cos \\theta+\\sin \\theta}=\\cos \\theta-\\sin \\theta"
"=\\dfrac{12}{13}-\\dfrac{5}{13}=\\dfrac{8}{13}"
ii)
Then
"\\cos \\theta=-\\sqrt{\\dfrac{144}{169}}=-\\dfrac{12}{13}"
"\\dfrac{\\cos(2\\theta)}{\\cos \\theta+\\sin \\theta}=\\cos \\theta-\\sin \\theta"
"=-\\dfrac{12}{13}-(-\\dfrac{5}{13})=-\\dfrac{8}{13}"
Comments
Leave a comment