A= 82°, b=100°, c=78° Find: B
Solution;
From the law of Sine and cosine;
"\\frac{sina}{sinB}=\\frac{sinb}{sinB}=\\frac{sinc}{sinC}+..."
Also;
"Cosa=cos(b)cos (c)+sin(b)sin(c)(cos A)"
By direct substitution;
"Cos (a)=cos100cos78+sin(100)sin(78)cos(82)"
Cos(a)=0.09796
Hence;
"a=84.38\u00b0"
Now;
"Sin(B)=\\frac{sin(b)sin(A)}{sin(a)}"
"Sin(B)=\\frac{sin(100)sin(82)}{sin(84.38}"
"Sin(B)=0.9799"
B=78.5°
Comments
Leave a comment