Simplify a trigonometric expression sin θ cos2 θ − sin θ
sinθcos2θ−sinθRecall that cos2θ=1−2sin2θ.Hence, we havesinθ(1−2sin2θ)−sinθ=sinθ−2sin3θ−sinθ=−2sin3θsin\theta cos2\theta - sin\theta \\ \text{Recall that} \, cos2\theta = 1 - 2sin^2\theta. \text{Hence, we have}\\ sin\theta(1 - 2sin^2\theta) - sin\theta \\ = sin\theta - 2sin^3\theta - sin\theta\\ = -2sin^3\thetasinθcos2θ−sinθRecall thatcos2θ=1−2sin2θ.Hence, we havesinθ(1−2sin2θ)−sinθ=sinθ−2sin3θ−sinθ=−2sin3θ
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments