3. Given a frustum of a right circular cone with a slant height of 9ft ., and the radii of bases are 5ft and 7ft. Find:
a. The lateral area
b. Altitude of the frustum
c. The altitude of the entire cone if the cone removed was replaced
Given,
Slant height of right circular cone "(l_1)=9ft"
Base radius "(r_1)= 5ft"
and "(r_2)=7ft"
a) Lateral area of the frustum "=\\pi (r_2-r_1)l_1"
"=3.14 (7-5)\\times 9 \\\\\n=3.14\\times 2\\times 9 \\\\\n=59.52ft^2"
b) Altitude of the frustum
"h'=(\\sqrt{9^2-4^2})=\\sqrt{77}=8.87ft"
"\\cos(\\theta)=\\frac{r_2-r_1}{l_1} \\\\\n=\\frac{7-2}{9} \\\\\n=\\frac{2}{9}\\\\\n\\Rightarrow \\theta = \\cos^{-1}(\\frac{2}{9}) \\\\\n\\Rightarrow \\theta = 77.16^\\circ"
c) Altitude of the cone complete cone
So, "\\tan(\\theta)=\\frac{h}{7}"
"h=\\tan(77.16)\\times 7 = 30.7ft"
Comments
Leave a comment