For the function f(x) = sin x, show with the aid elementary formula
sinA=1/2(1–cos2A)
f(x+y) – f(x) = cos x sin y – 2sin x sin^2 (1/2y)
Solution:
(1) We know that
"\\cos2A=1-2\\sin^2A\n\\\\ \\Rightarrow 2\\sin^2A=1-\\cos2A \\ ...(i)\n\\\\ \\Rightarrow \\sin A=\\sqrt{\\dfrac{{1-\\cos 2A}}{2}}"
(2) Given "f(x)=\\sin x"
Now, "f(x+y) \u2013 f(x)=\\sin(x+y)-\\sin x"
"=\\sin x \\cos y+\\cos x \\sin y-\\sin x\n\\\\=\\cos x \\sin y-\\sin x (1-\\cos y)\n\\\\=\\cos x \\sin y-\\sin x (2\\sin^2\\frac y2) \\ [using \\ (i)]\n\\\\=\\cos x \\sin y-2\\sin x \\sin^2\\frac y2"
Comments
Leave a comment