Solution :
(a)
Given: a(3,m) and b (2,-1)
Using dot product formula of vectors:
a . b = ∣ a ∣ ∣ b ∣ cos θ a.b=|a||b|\cos \theta a . b = ∣ a ∣∣ b ∣ cos θ
⇒ 3 ( 2 ) + m ( − 1 ) = 3 2 + m 2 × 2 2 + ( − 1 ) 2 × cos ( 360 ° ) ⇒ 6 − m = ( 9 + m 2 ) 5 × ( 1 ) ⇒ ( 6 − m ) 2 = 5 ( 9 + m 2 ) ⇒ 36 + m 2 − 12 m = 45 + 5 m 2 ⇒ 4 m 2 + 12 m + 9 = 0 ⇒ 4 m 2 + 6 m + 6 m + 9 = 0 ⇒ ( 4 m + 3 ) ( 2 m + 3 ) = 0 ⇒ m = − 3 4 , − 3 2 \\\Rightarrow 3(2)+m(-1)=\sqrt{3^2+m^2}\times\sqrt{2^2+(-1)^2}\times \cos(360\degree)
\\\Rightarrow 6-m=\sqrt{(9+m^2)5}\times(1)
\\\Rightarrow (6-m)^2=5(9+m^2)
\\\Rightarrow 36+m^2-12m=45+5m^2
\\\Rightarrow 4m^2+12m+9=0
\\\Rightarrow 4m^2+6m+6m+9=0
\\\Rightarrow (4m+3)(2m+3)=0
\\\Rightarrow m=-\dfrac34,-\dfrac32 ⇒ 3 ( 2 ) + m ( − 1 ) = 3 2 + m 2 × 2 2 + ( − 1 ) 2 × cos ( 360° ) ⇒ 6 − m = ( 9 + m 2 ) 5 × ( 1 ) ⇒ ( 6 − m ) 2 = 5 ( 9 + m 2 ) ⇒ 36 + m 2 − 12 m = 45 + 5 m 2 ⇒ 4 m 2 + 12 m + 9 = 0 ⇒ 4 m 2 + 6 m + 6 m + 9 = 0 ⇒ ( 4 m + 3 ) ( 2 m + 3 ) = 0 ⇒ m = − 4 3 , − 2 3
(b)
Two sides are :p=(√2+1)cm and b=(√2-1) cm
We need to find the Hypotenuse (h).
Using Pythagoras theorem,
h 2 = p 2 + b 2 h^2=p^2+b^2 h 2 = p 2 + b 2
⇒ h 2 = ( 2 + 1 ) 2 + ( 2 − 1 ) 2 ⇒ h 2 = 2 + 1 + 2 2 + 2 + 1 − 2 2 ⇒ h 2 = 6 ⇒ h = 6 c m \Rightarrow h^2=(\sqrt2+1)^2+(\sqrt2-1)^2
\\\Rightarrow h^2=2+1+2\sqrt2+2+1-2\sqrt2
\\\Rightarrow h^2=6
\\\Rightarrow h=\sqrt6\ cm ⇒ h 2 = ( 2 + 1 ) 2 + ( 2 − 1 ) 2 ⇒ h 2 = 2 + 1 + 2 2 + 2 + 1 − 2 2 ⇒ h 2 = 6 ⇒ h = 6 c m
Comments