Find the smallest value of parameter alpha such that equation
(sin(x))^2 * cos(2x) + alpha*(cos(x)^4-sin(x)^4)= -10(2* alpha +1)^2
has at least one real solution.
"=\\cos(2x)\\cdot1=\\cos(2x)"
"\\sin^2x=\\dfrac{1-\\cos(2x)}{2}"
"\\dfrac{1-\\cos(2x)}{2}(\\cos(2x))+\\alpha\\cos(2x)=-10(2\\alpha+1)^2"
"\\cos^2(2x)-(1+2\\alpha)\\cos(2x)-20(2\\alpha+1)^2=0"
"-1\\leq \\cos(2x)\\leq 1"
"D=(-(1+2\\alpha))^2-4(1)(-20(2\\alpha+1)^2)=81(2\\alpha+1)^2"
"\\cos(2x)=\\dfrac{(1+2\\alpha)\\pm9(1+2\\alpha)}{2}"
"\\cos(2x)=-4(1+2\\alpha)\\text{ or } \\cos(2x)=5(1+2\\alpha)"
"-1\\leq-4(1+2\\alpha)\\leq1"
"-\\dfrac{1}{4}\\leq1+2\\alpha\\leq\\dfrac{1}{4}"
"-\\dfrac{5}{4}\\leq2\\alpha\\leq -\\dfrac{3}{4}"
"-\\dfrac{5}{8}\\leq\\alpha\\leq -\\dfrac{3}{8}"
"-\\dfrac{1}{5}\\leq1+2\\alpha\\leq\\dfrac{1}{5}"
"-\\dfrac{6}{5}\\leq2\\alpha\\leq -\\dfrac{4}{5}"
"-\\dfrac{3}{5}\\leq\\alpha\\leq -\\dfrac{2}{5}"
"-\\dfrac{5}{8}=-\\dfrac{25}{40}, -\\dfrac{3}{5}=-\\dfrac{24}{40}"
The smallest value of parameter "\\alpha" is "-\\dfrac{5}{8}" .
Comments
Leave a comment