S o l u t i o n Solution S o l u t i o n The angle between y-axis and 12 N 12N 12 N Vectors is ; Therefore
⟹ 36 0 ∘ − 28 0 ∘ = 8 0 ∘ A n g l e b e t w e e n v e c t o r s ⟹ θ = 80 + 65 = θ = 14 5 ∘ T h e n u s i n g a p a r a l l e l o g r a m A n g l e b e t w e e n v e c t o r ⟹ 180 − θ ⟹ 180 − 145 ⟹ 3 5 ∘ N o w , f i n d t h e R e s u l t a n t R = ( 12 ) 2 + ( 40 ) 2 + 2 ∗ 12 ∗ 40 ∗ C o s ( 3 5 ∘ ) = 2530.38596 = 50.30 D i r e c t i o n ( U s e S i n e ) = S i n ( 3 5 ∘ ) S i n θ = R 40 S i n θ = 40 ∗ S i n ( 3 5 ∘ ) 50.3 0 ∘ θ = 27.1 4 ∘ \implies\ 360^\circ-\ 280^\circ\\
=80^\circ\\
Angle\ between\ vectors\\
\implies\theta=80+65\\
=\theta=145^\circ\\
Then\ using\ a\ parallelogram\\
Angle\ between\ vector\ \implies\ 180-\theta\\
\implies180-145\\
\implies\ 35^\circ\
Now,\ find\ the\ Resultant\ R\\
=\sqrt{(12)^2+(40)^2+2*12*40*Cos(35^\circ)}\\
=\sqrt{2530.38596}\\
=50.30\\
Direction(Use\ Sine)\\
=\frac{Sin(35^\circ)}{Sin\ \theta}=\frac{R}{40}\\
Sin\ \theta=\frac{40*Sin(35^\circ)}{50.30^\circ}\\
\theta=27.14^\circ ⟹ 36 0 ∘ − 28 0 ∘ = 8 0 ∘ A n g l e b e tw ee n v ec t ors ⟹ θ = 80 + 65 = θ = 14 5 ∘ T h e n u s in g a p a r a ll e l o g r am A n g l e b e tw ee n v ec t or ⟹ 180 − θ ⟹ 180 − 145 ⟹ 3 5 ∘ N o w , f in d t h e R es u lt an t R = ( 12 ) 2 + ( 40 ) 2 + 2 ∗ 12 ∗ 40 ∗ C os ( 3 5 ∘ ) = 2530.38596 = 50.30 D i rec t i o n ( U se S in e ) = S in θ S in ( 3 5 ∘ ) = 40 R S in θ = 50.3 0 ∘ 40 ∗ S in ( 3 5 ∘ ) θ = 27.1 4 ∘
Comments