Solve (sinx)sec^2(x)+(cos x)cosec^2 (x)=0.
Calculation.
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\sin\\theta.\\sec^2\\theta+\\cos\\theta.\\csc^2\\theta&=\\small 0\\\\\n\\small \\frac{\\sin\\theta}{\\cos^2\\theta}+\\frac{\\cos\\theta}{\\sin^2\\theta}&=\\small 0\\\\\n\\small \\frac{\\sin^3\\theta+\\cos^3\\theta}{\\sin^2\\theta.\\cos^2\\theta}&=\\small0\\\\\n\\\\\n\\small \\sin^2\\theta.\\cos^2\\theta&\\not=\\small 0\\\\\n\\\\\n\\therefore\\,\\small \\sin^3\\theta+\\cos^3\\theta&=\\small 0\\\\\n\\small (\\sin\\theta+\\cos\\theta)(1-\\sin\\theta.\\cos\\theta)&=\\small 0\\\\\n\\\\\n\\small 1-\\sin\\theta.\\cos\\theta&=\\small 0\\\\\n\\small \\sin2\\theta&=\\small 2\\\\\n\\because \\,\\small -1\\leq&\\small \\sin2\\theta\\leq1\\\\\n\\therefore\\,\\text{neglected},\\\\\n\\\\\n\\small \\sin\\theta+\\cos\\theta&=\\small 0\\\\\n\\small \\tan\\theta&=\\small -1\\cdots(\\cos\\theta\\not=0)\\\\\n\\small \\theta&=\\small \\frac{3\\pi}{4}+n\\pi\\cdots\\cdots(\\text{Answer})\\\\\n\n\\end{aligned}"
Comments
Leave a comment