Solve (sinx)sec^2(x)+(cos x)cosec^2 (x)=0.
Calculation.
sinθ.sec2θ+cosθ.csc2θ=0sinθcos2θ+cosθsin2θ=0sin3θ+cos3θsin2θ.cos2θ=0sin2θ.cos2θ≠0∴ sin3θ+cos3θ=0(sinθ+cosθ)(1−sinθ.cosθ)=01−sinθ.cosθ=0sin2θ=2∵ −1≤sin2θ≤1∴ neglected,sinθ+cosθ=0tanθ=−1⋯(cosθ≠0)θ=3π4+nπ⋯⋯(Answer)\qquad\qquad \begin{aligned} \small \sin\theta.\sec^2\theta+\cos\theta.\csc^2\theta&=\small 0\\ \small \frac{\sin\theta}{\cos^2\theta}+\frac{\cos\theta}{\sin^2\theta}&=\small 0\\ \small \frac{\sin^3\theta+\cos^3\theta}{\sin^2\theta.\cos^2\theta}&=\small0\\ \\ \small \sin^2\theta.\cos^2\theta&\not=\small 0\\ \\ \therefore\,\small \sin^3\theta+\cos^3\theta&=\small 0\\ \small (\sin\theta+\cos\theta)(1-\sin\theta.\cos\theta)&=\small 0\\ \\ \small 1-\sin\theta.\cos\theta&=\small 0\\ \small \sin2\theta&=\small 2\\ \because \,\small -1\leq&\small \sin2\theta\leq1\\ \therefore\,\text{neglected},\\ \\ \small \sin\theta+\cos\theta&=\small 0\\ \small \tan\theta&=\small -1\cdots(\cos\theta\not=0)\\ \small \theta&=\small \frac{3\pi}{4}+n\pi\cdots\cdots(\text{Answer})\\ \end{aligned}sinθ.sec2θ+cosθ.csc2θcos2θsinθ+sin2θcosθsin2θ.cos2θsin3θ+cos3θsin2θ.cos2θ∴sin3θ+cos3θ(sinθ+cosθ)(1−sinθ.cosθ)1−sinθ.cosθsin2θ∵−1≤∴neglected,sinθ+cosθtanθθ=0=0=0=0=0=0=0=2sin2θ≤1=0=−1⋯(cosθ=0)=43π+nπ⋯⋯(Answer)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments