A water wheel rotates through the angle x, the water level L behind the wheel changes according the equation "L = 1 - cos x - 2 sin^2 x" where L is measured in inches. Determine all values of x in degrees for which the water level is zero.
"L=1\u2212cosx\u22122sin^2x"
"Put L=0 \\space in \\space L=1\u2212cosx\u22122sin^2x, we \\space get"
"\u21d21\u2212cosx\u22122sin^2x=0"
"\u21d21\u2212cosx\u22122(1\u2212cos^2x)=0 \\space \\space [\u2235sin^2x+cos^2x=1]\\\\\u21d21\u2212cosx\u22122+2cos2x=0"
"\u21d22cos^2x\u2212cosx\u22121=0\\\\\u21d22cos^2x\u22122cosx+cosx\u22121=0"
"\u21d22cosx(cosx\u22121)+(cosx\u22121)=0\\\\\u21d2(cosx\u22121)(2cosx+1)=0\\\\\u21d2cosx\u22121=0 or 2cosx+1=0"
"\u21d2cosx=1\\space or\\space 2cosx=\u22121\\\\\u21d2cosx=1\\space or \\space cosx=\u22121\/2\\\\\u21d2x=360^{\\circ}n \\,or \\\\ \\,x=120^{\\circ}+360^{\\circ}n \\space or\\space x=240^{\\circ}+360^{\\circ}n, n\u2208\u2124"
Hence the values of x for which the water level is zero are,
"x=360^{\\circ}n\\space or\\space x=120^{\\circ}+360^{\\circ}n\\space or \\space x=240^{\\circ}+360^{\\circ}n, n\u2208\u2124"
Comments
Leave a comment