Answer to Question #176966 in Trigonometry for Tony Huang

Question #176966

Given sin a = 24/25, a in quadrant 2, and cos B = -4/5, in quadrant, find A) sin(a+B) and B) cos(a+B).


1
Expert's answer
2021-04-11T13:38:14-0400

Given:

sin(a) = 24/25, a in 2 quadrant.

cos(b) = -4/5, b in 2 quadrant.





A) sin (a+b)


sin(a+b)=sin(a)cos(b)+cos(a)sin(b)\boxed{sin (a+b)=sin(a)cos(b)+cos(a)sin(b)}

sin(a+b)=(2425)(45)+(725)(35)sin (a+b)=({24\over25})*(-{4\over5})+(-{7\over25})({3\over5})


sin(a+b)=117125sin (a+b)=-{117\over125}




B)cos(a+b)


cos(a+b)=cos(a)cos(b)sin(a)sin(b)\boxed{cos(a+b)=cos(a)cos(b)-sin(a)sin(b)}

cos(a+b)=(725)(45)(2425)(35)cos(a+b)=(-{7\over25})*(-{4\over5})-({24\over25})*({3\over5})


Cos(a+b)=44125Cos(a+b)=-{44\over125}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment