Given sin a = 24/25, a in quadrant 2, and cos B = -4/5, in quadrant, find A) sin(a+B) and B) cos(a+B).
Given:
sin(a) = 24/25, a in 2 quadrant.
cos(b) = -4/5, b in 2 quadrant.
A) sin (a+b)
"\\boxed{sin (a+b)=sin(a)cos(b)+cos(a)sin(b)}"
"sin (a+b)=({24\\over25})*(-{4\\over5})+(-{7\\over25})({3\\over5})"
"sin (a+b)=-{117\\over125}"
B)cos(a+b)
"\\boxed{cos(a+b)=cos(a)cos(b)-sin(a)sin(b)}"
"cos(a+b)=(-{7\\over25})*(-{4\\over5})-({24\\over25})*({3\\over5})"
"Cos(a+b)=-{44\\over125}"
Comments
Leave a comment