Question #176084

If cos(𝜃 ) = 1/3 and tan( 𝜃 ) < 0 , find the exact value of each of the remaining trigonometric functions of 𝜃


1
Expert's answer
2021-03-31T15:32:30-0400

if cos θ\theta >0 and tan θ\theta <0 then this falls on the fourth quadrant. The sin will also be negative.

let x be the adjacent, y the opposite and r the hypotenuse of a right angled triangle where θ\theta is the angle formed as x and r intersect.

cosθ=xrcos \theta=\frac x r

x=1, r=3

y=r2x2y=\sqrt {r^2-x^2}

y=3212=8y=\sqrt{3^2-1^2}=\sqrt 8

secθ=1cosθ=113=3sec \theta=\frac{1}{cos \theta}=\frac{1}{\frac 1 3}=3

sinθ=yr=83\sin \theta =-\frac y r=- \frac {\sqrt{8}}3

cscθ=1sinθ=183=38\csc \theta =\frac 1 {sin\theta}=\frac {1}{-\frac {\sqrt 8}{3}}=-\frac{3}{\sqrt 8}

tanθ=yx=81=8\tan \theta =-\frac y x=-\frac {\sqrt 8} 1=-\sqrt 8

cotθ=1tanθ=18\cot \theta=\frac{1}{tan \theta}=-\frac{1}{\sqrt 8}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS