Answer to Question #176570 in Trigonometry for Yusuf Idris

Question #176570

Show that cos³θ +sin³θ =1/4(cos³θ + 3cosθ - sin³θ + 3sinθ)



1
Expert's answer
2021-05-07T09:26:18-0400
  • It is a rearrangement of several trigonometric identities.
  • As it is known,

sin3θ=3sinθ4sinθ3cos3θ=4cos3θ3cosθ\qquad\qquad \begin{aligned} \small \sin3\theta &=\small 3\sin\theta-4\sin\theta^3\\ \small \cos3\theta&=\small 4\cos^3\theta -3\cos\theta \end{aligned}

  • Then by rearranging,

4cos3θ=cos3θ+3cosθcos3θ=14(cos3θ+3cosθ)(1)4sin3θ=3sinθsin3θsin3θ=14(3sinθsin3θ)(2)Then by (1)+(2)sin3θ+cos3θ=14(3sinθsin3θ)+14(cos3θ+3cosθ)=14[3cosθ+cos3θ+3sinθsin3θ]\qquad\qquad \begin{aligned} \small 4\cos^3\theta &=\small \cos3\theta+3\cos\theta\\ \small \cos^3\theta&=\small \frac{1}{4}\cdot(\cos3\theta+3\cos\theta)\cdots\cdots(1)\\ \\ \small 4\sin^3\theta&=\small 3\sin\theta-\sin^3\theta\\ \small \sin^3\theta&=\small \frac{1}{4}\cdot(3\sin\theta-\sin^3\theta)\cdots\cdots(2)\\ \\ &\small\text{Then by (1)+(2)}\\ \\ \small \sin^3\theta+\cos^3\theta &=\small \frac{1}{4}(3\sin\theta-\sin^3\theta) +\frac{1} {4}(\cos3\theta+3\cos\theta)\\ &=\small \frac{1}{4}\Big[3\cos\theta+\cos3\theta+3\sin\theta-\sin^3\theta\Big] \end{aligned}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment