- It is a rearrangement of several trigonometric identities.
- As it is known,
sin3θcos3θ=3sinθ−4sinθ3=4cos3θ−3cosθ
4cos3θcos3θ4sin3θsin3θsin3θ+cos3θ=cos3θ+3cosθ=41⋅(cos3θ+3cosθ)⋯⋯(1)=3sinθ−sin3θ=41⋅(3sinθ−sin3θ)⋯⋯(2)Then by (1)+(2)=41(3sinθ−sin3θ)+41(cos3θ+3cosθ)=41[3cosθ+cos3θ+3sinθ−sin3θ]
Comments
Leave a comment