Question #164870

The terminal arm of an angle is standard position passes through π‘ƒ(βˆ’5,5).

a. Sketch a diagram of an angle in standard position.

b. Determine the length of the hypotenuse.

c. Determine the primary trigonometric ratios to three decimal places.


1
Expert's answer
2021-02-24T06:09:15-0500

(a) Diagram of the angle in Standard position






(b) Length of the hypotenuse (Hyp)


Hyp=(βˆ’5)2+(5)2=25+25=50Hyp=52Hyp = \sqrt{(-5)^2 + (5)^2}\\ \qquad = \sqrt{25 + 25}\\ \qquad = \sqrt{50}\\ Hyp = 5\sqrt{2}



(c) The primary trigonometric ratios are sin, cos and tan.

Since the terminal arm lies in 2nd quadrant, we have to take positive signs for sin, while others are negative.


opp = 5, adj = -5


(i) sin

sin⁑α=opphyp=552=12=11.4142sin⁑α=0.707\sin{\alpha} = \dfrac{opp}{hyp}=\dfrac{5}{5\sqrt{2}}=\dfrac{1}{\sqrt{2}}=\dfrac{1}{1.4142}\\ \bold{\sin{\alpha} = 0.707}



(ii) cos

cos⁑α=adjhyp=βˆ’552=βˆ’12=βˆ’11.4142cos⁑α=βˆ’0.707\cos{\alpha} = \dfrac{adj}{hyp}=\dfrac{-5}{5\sqrt{2}}=-\dfrac{1}{\sqrt{2}}=-\dfrac{1}{1.4142}\\ \bold{\cos{\alpha} = -0.707}


(iii) tan

tan⁑α=oppadj=5βˆ’5=βˆ’1\tan{\alpha} = \dfrac{opp}{adj}=\dfrac{5}{-5}=\bold{-1}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS