Solution.
2sin2x−sinx=1, 0°≤x<360°.Make a replacement: t=sinx, then 2t2−t−1=0.
Solve this equation:
D=b2−4ac=1−4⋅2⋅(−1)=9,t1=2a−b−D=2⋅21−3=−21;t2=2a−b+D=2⋅21+3=1. Back to the replacement:
1)
sinx=−21,x=(−1)narcsin(−21)+πn,n∈Z,x=(−1)n+1arcsin21+πn,n∈Z,x=(−1)n+16π+πn,n∈Z,x=(−1)n+130°+180°n,n∈Z.
At
n=1:x=30°+180°=210°,n=2:x=−30°+180°⋅2=330°.
2)
sinx=1,x=2π+2πk,k∈Z,x=90°+360°k,k∈Z.
At
k=0:x=90°.
Answer. x=210°,x=330°,x=90°.
Comments