Question #164596

Solve for x in degrees, where 0 degrees <= x < 360 degrees . 2sin^2 x - sin x = 1


1
Expert's answer
2021-02-24T07:41:54-0500

Solution.

2sin2xsinx=1, 0°x<360°.2\sin^2{x}-\sin{x}=1, \text{ }0^{\degree}\leq x <360^{\degree}.

Make a replacement: t=sinx,t=\sin{x}, then 2t2t1=0.2t^2-t-1=0.

Solve this equation:


D=b24ac=142(1)=9,D=b^2-4ac=1-4\cdot 2\cdot (-1)=9,t1=bD2a=1322=12;t2=b+D2a=1+322=1.t_1=\frac{-b-\sqrt{D}}{2a}=\frac{1-3}{2\cdot 2}=-\frac{1}{2}; t_2=\frac{-b+\sqrt{D}}{2a}=\frac{1+3}{2\cdot 2}=1.

Back to the replacement:

1)

sinx=12,x=(1)narcsin(12)+πn,nZ,x=(1)n+1arcsin12+πn,nZ,x=(1)n+1π6+πn,nZ,x=(1)n+130°+180°n,nZ.\sin{x}=-\frac{1}{2}, \newline x=(-1)^n\arcsin{(-\frac{1}{2})}+\pi n, n \in Z, \newline x=(-1)^{n+1}\arcsin{\frac{1}{2}}+\pi n, n \in Z, \newline x=(-1)^{n+1}\frac{\pi}{6}+\pi n, n \in Z, \newline x=(-1)^{n+1}30^{\degree}+180^{\degree} n, n \in Z.

At

n=1:x=30°+180°=210°,n=2:x=30°+180°2=330°.n=1: x=30^{\degree}+180^{\degree}=210^{\degree}, \newline n=2: x=-30^{\degree}+180^{\degree}\cdot 2=330^{\degree}. \newline

2)

sinx=1,x=π2+2πk,kZ,x=90°+360°k,kZ.\sin{x}=1, \newline x=\frac{\pi}{2}+2\pi k, k \in Z, \newline x=90^{\degree}+360^{\degree}k, k \in Z. \newline

At

k=0:x=90°.k=0: x=90^{\degree}.

Answer. x=210°,x=330°,x=90°.x=210^{\degree}, x=330^{\degree}, x=90^{\degree}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS