Solution.
2 sin 2 x − sin x = 1 , 0 ° ≤ x < 36 0 ° . 2\sin^2{x}-\sin{x}=1, \text{ }0^{\degree}\leq x <360^{\degree}. 2 sin 2 x − sin x = 1 , 0 ° ≤ x < 36 0 ° . Make a replacement: t = sin x , t=\sin{x}, t = sin x , then 2 t 2 − t − 1 = 0. 2t^2-t-1=0. 2 t 2 − t − 1 = 0.
Solve this equation:
D = b 2 − 4 a c = 1 − 4 ⋅ 2 ⋅ ( − 1 ) = 9 , D=b^2-4ac=1-4\cdot 2\cdot (-1)=9, D = b 2 − 4 a c = 1 − 4 ⋅ 2 ⋅ ( − 1 ) = 9 , t 1 = − b − D 2 a = 1 − 3 2 ⋅ 2 = − 1 2 ; t 2 = − b + D 2 a = 1 + 3 2 ⋅ 2 = 1. t_1=\frac{-b-\sqrt{D}}{2a}=\frac{1-3}{2\cdot 2}=-\frac{1}{2};
t_2=\frac{-b+\sqrt{D}}{2a}=\frac{1+3}{2\cdot 2}=1. t 1 = 2 a − b − D = 2 ⋅ 2 1 − 3 = − 2 1 ; t 2 = 2 a − b + D = 2 ⋅ 2 1 + 3 = 1. Back to the replacement:
1)
sin x = − 1 2 , x = ( − 1 ) n arcsin ( − 1 2 ) + π n , n ∈ Z , x = ( − 1 ) n + 1 arcsin 1 2 + π n , n ∈ Z , x = ( − 1 ) n + 1 π 6 + π n , n ∈ Z , x = ( − 1 ) n + 1 3 0 ° + 18 0 ° n , n ∈ Z . \sin{x}=-\frac{1}{2}, \newline
x=(-1)^n\arcsin{(-\frac{1}{2})}+\pi n, n \in Z, \newline
x=(-1)^{n+1}\arcsin{\frac{1}{2}}+\pi n, n \in Z, \newline
x=(-1)^{n+1}\frac{\pi}{6}+\pi n, n \in Z, \newline
x=(-1)^{n+1}30^{\degree}+180^{\degree} n, n \in Z. sin x = − 2 1 , x = ( − 1 ) n arcsin ( − 2 1 ) + πn , n ∈ Z , x = ( − 1 ) n + 1 arcsin 2 1 + πn , n ∈ Z , x = ( − 1 ) n + 1 6 π + πn , n ∈ Z , x = ( − 1 ) n + 1 3 0 ° + 18 0 ° n , n ∈ Z .
At
n = 1 : x = 3 0 ° + 18 0 ° = 21 0 ° , n = 2 : x = − 3 0 ° + 18 0 ° ⋅ 2 = 33 0 ° . n=1: x=30^{\degree}+180^{\degree}=210^{\degree}, \newline
n=2: x=-30^{\degree}+180^{\degree}\cdot 2=330^{\degree}. \newline n = 1 : x = 3 0 ° + 18 0 ° = 21 0 ° , n = 2 : x = − 3 0 ° + 18 0 ° ⋅ 2 = 33 0 ° .
2)
sin x = 1 , x = π 2 + 2 π k , k ∈ Z , x = 9 0 ° + 36 0 ° k , k ∈ Z . \sin{x}=1, \newline
x=\frac{\pi}{2}+2\pi k, k \in Z, \newline
x=90^{\degree}+360^{\degree}k, k \in Z. \newline sin x = 1 , x = 2 π + 2 πk , k ∈ Z , x = 9 0 ° + 36 0 ° k , k ∈ Z .
At
k = 0 : x = 9 0 ° . k=0: x=90^{\degree}. k = 0 : x = 9 0 ° .
Answer. x = 21 0 ° , x = 33 0 ° , x = 9 0 ° . x=210^{\degree}, x=330^{\degree}, x=90^{\degree}. x = 21 0 ° , x = 33 0 ° , x = 9 0 ° .
Comments