d(t)=6sin(2πt)
a)ω=2π;ω−ω is the angular frequency
T=ω2π=4;T is period of the motion
f=T1=0.25;f is the frequency of the motion
b)d(2.5)=6sin(2π∗2.5)≈−4,24
v(t)=d′(t);v(t)velocity object
v(t)=26πcos(2πt)
if v(t)>0 weight moving from the equilibrium
if v(t)<0 weight moving toward the equilibrium
v(2.5)=26πcos(2π∗2.5)=−6.6<0
then the weight moving toward the equilibrium
c)d(3.5)=6sin(2π∗3.5)≈−4,24
v(3.5)=26πcos(2π∗3.5)=6.6>0
then the weight moving from the equilibrium
d) d(1)=6sin(2π)≈=6
d(1.5)=6sin(2π)≈4,24
e)vavg=ΔtΔs=1.5−14.24−6=−3.52
f)v(t)=26πcos(2πt)
v(1.75)=26πcos(2π∗1.75)≈−8.7
v(2)=26πcos(2π∗2)≈−9.4
∣v(2)∣>∣v(1.75)∣
Comments