Question #163402

A weight on the end of a spring oscillating in harmonic motion. The equation model for oscillation is d (t) = 6 sin ((pi/2)(t)) where d is the distance (in centimeter) from the equilibrium point in t sec.

a. What is the period of the motion? What is the frequency of the motion?

b. What is the placement from the equilibrium at t = 2.5? Is the weight moving toward the equilibrium at this time?

c. What is the displacement from equilibrium at t = 3.5? Is the weight moving toward the equilibrium point or away from the equilibrium at this time?

d. How far does the weight move between t = 1 and t = 1.5 sec?

e. What is the average velocity for this interval? 

f. Do you expect a greater or lesser velocity for t = 1.75 to t = 2? Explain why.

 




1
Expert's answer
2021-02-24T06:49:55-0500

d(t)=6sin(π2t)d(t) =6\sin(\frac{\pi}{2}t)

a)ω=π2;ωω is the angular frequencya)\omega= \frac{\pi}{2};\omega-\text{ω is the angular frequency}

T=2πω=4;T is period of the motionT=\frac{2\pi}{\omega}=4;T\text{ is period of the motion}

f=1T=0.25;f is the frequency of the motionf=\frac{1}{T}=0.25;f \text{ is the frequency of the motion}


b)d(2.5)=6sin(π22.5)4,24b)d(2.5)=6\sin(\frac{\pi}{2}*2.5)\approx-4,24

v(t)=d(t);v(t)velocity objectv(t) = d'(t);v(t)\text{velocity object}

v(t)=6π2cos(π2t)v(t)=\frac{6\pi}{2}\cos{(\frac{\pi}{2}t)}

if v(t)>0 weight moving from the equilibrium\text{if }v(t)>0\text{ weight moving from the equilibrium}

if v(t)<0 weight moving toward the equilibrium\text{if }v(t)<0\text{ weight moving toward the equilibrium}

v(2.5)=6π2cos(π22.5)=6.6<0v(2.5)=\frac{6\pi}{2}\cos{(\frac{\pi}{2}*2.5)}=-6.6<0

then the weight moving toward the equilibrium\text{then the weight moving toward the equilibrium}


c)d(3.5)=6sin(π23.5)4,24c)d(3.5)=6\sin(\frac{\pi}{2}*3.5)\approx-4,24

v(3.5)=6π2cos(π23.5)=6.6>0v(3.5)=\frac{6\pi}{2}\cos{(\frac{\pi}{2}*3.5)}=6.6>0

then the weight moving from the equilibrium\text{then the weight moving from the equilibrium}


d) d(1)=6sin(π2)=6d)\ d(1)=6\sin(\frac{\pi}{2})\approx=6

 d(1.5)=6sin(π2)4,24\ d(1.5)=6\sin(\frac{\pi}{2})\approx4,24

e)vavg=ΔsΔt=4.2461.51=3.52e) v_{avg}=\frac{\Delta{s}}{\Delta{t}}=\frac{4.24-6}{1.5-1}=-3.52


f)v(t)=6π2cos(π2t)f)v(t)=\frac{6\pi}{2}\cos{(\frac{\pi}{2}t)}

v(1.75)=6π2cos(π21.75)8.7v(1.75)=\frac{6\pi}{2}\cos{(\frac{\pi}{2}*1.75)}\approx-8.7

v(2)=6π2cos(π22)9.4v(2)=\frac{6\pi}{2}\cos{(\frac{\pi}{2}*2)}\approx-9.4

v(2)>v(1.75)|v(2)|>|v(1.75)|












Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS