Answer to Question #156114 in Trigonometry for .

Question #156114

solve the following equation for 0«x«360

a) 6 cos²x + sin x - 4

b) 9 tan x + tan²x + 5 sec² x - 3


1
Expert's answer
2021-01-19T03:46:28-0500

a)6cos2x+sinx4=06\cos^2 x+\sin x-4=0

6(1sin2x)+sinx4=06(1-\sin^2 x)+\sin x-4=0

6sin2x+sinx+2=0-6\sin^2 x+\sin x+2=0

This quadratic equation has solutions sinx=12\sin x=-\frac{1}{2} and sinx=23\sin x=\frac{2}{3}

The equation sinx=12\sin x=-\frac{1}{2} has solutions 210210^\circ and 330330^\circ in [0,360][0^\circ,360^\circ], and since 23>0\frac{2}{3}>0, the equation sinx=23\sin x=\frac{2}{3} has solutions sin123\sin^{-1}\frac{2}{3} and 180sin123180^\circ-\sin^{-1}\frac{2}{3} in [0,360][0^\circ,360^\circ]

b)9tanx+tan2x+5sec2x3=09\tan x+\tan^2 x+5\sec^2 x-3=0

9tanx+tan2x+5(1+tan2x)3=09\tan x+\tan^2 x+5(1+\tan^2 x)-3=0

6tan2x+9tanx+2=06\tan^2 x+9\tan x+2=0

This quadratic equation has solutions tanx=9332\tan x=-\frac{9-\sqrt{33}}{2} and tanx=9+332\tan x=-\frac{9+\sqrt{33}}{2}

Since 9332<0-\frac{9-\sqrt{33}}{2}<0, the equation tanx=9332\tan x=-\frac{9-\sqrt{33}}{2} has solutions 360tan19332360^\circ-\tan^{-1}\frac{9-\sqrt{33}}{2} and 180tan19332180^\circ-\tan^{-1}\frac{9-\sqrt{33}}{2} in [0,360][0^\circ,360^\circ]

Similarly the equation tanx=9+332\tan x=-\frac{9+\sqrt{33}}{2} has solutions 360tan19+332360^\circ-\tan^{-1}\frac{9+\sqrt{33}}{2} and 180tan19+332180^\circ-\tan^{-1}\frac{9+\sqrt{33}}{2}

Answer: a)210,330,sin123,180sin23210^\circ, 330^\circ, \sin^{-1}\frac{2}{3}, 180^\circ-\sin\frac{2}{3}

b)360tan19332,180tan19332,360^\circ-\tan^{-1}\frac{9-\sqrt{33}}{2}, 180^\circ-\tan^{-1}\frac{9-\sqrt{33}}{2},

360tan19+332,180tan19+332360^\circ-\tan^{-1}\frac{9+\sqrt{33}}{2}, 180^\circ-\tan^{-1}\frac{9+\sqrt{33}}{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment